Последние годы представление о механизмах программируемой гибели клеток кардинально изменилось, что позволило выделить в самостоятельные формы апоптоз, некроз, аутофагию, митотическую катастрофу, клеточное старение и фагоцитоз, опосредованный презентацией на мембране «сигналов гибели» [1]. Особую значимость приобретает феномен апоптоза, открытый сравнительно недавно [2].
Установлено, что генетическая программа в клетках организма, обеспечивающая их жизненный цикл, при определенных физиологических или патологических условиях, в том числе вирусных инфекциях, запускает процесс апоптоза (программируемая гибель клеток) [3, 4].
Вирусы внутри зараженной клетки способны нарушать передачу сигналов рецепторами цитокинов и снижать апоптотическую активность, что требует поиска способов регуляции и коррекции апоптоза. Оценка апоптоза при клинико-иммунологическом обследовании пациентов с различными заболеваниями важна для обоснования методов коррекции апоптоза, в том числе с использованием интерфероновых препаратов.
Апоптоз – программируемая гибель клетки
Нормальное развитие организма и функционирование иммунной системы поддерживаются балансом гомеостаза (соотношение между образующимися и отмирающими клетками). Апоптоз – необходимый инструмент морфогенеза и обеспечения нормального функционирования многоклеточных механизмов [5, 6]. Этот процесс регулируется программируемой (физиологической) гибелью клеток. В процессе апоптоза клеточные популяции очищаются от отработанных, нежелательных или поврежденных клеток.
Первоочередными морфологическими признаками этого утонченного процесса служат конденсация хроматина и сжатие клетки. Далее клеточная мембрана формирует небольшие пузыри, и клетка начинает выталкивать свое содержимое внутрь везикул. В некоторые из них попадают части фрагментированного и конденсированного (пикнотического) ядра, что приводит к образованию апоптотических везикул, поглощаемых и разрушаемых макрофагами. Воспалительная реакция отсутствует, поскольку цитоплазматические ферменты и токсические метаболиты остаются окруженными мембраной клетки (рис. 1) [3].
Таким образом, структурная целостность биологических мембран предупреждает выход содержимого цитоплазмы, в том числе лизосомальных ферментов, во внеклеточную среду, что позволяет избежать структурных и функциональных дефектов ткани и воспаления при апоптозе.
Апоптоз – генетически регулируемый процесс, для которого необходимы запас энергии и синтез определенных белков. Фрагментация клеток при апоптозе может стимулироваться набором сигналов, в том числе физиологическими стимулами (например, связывание антигена).
В качестве регуляторных сигналов рассматривают нарушение межклеточных контактов, удаление ростовых факторов, гипертермию или действие гранзимов. Общим внутриклеточным медиатором апоптоза может быть окислительный стресс (О2, Н2О2, NO, ОН-радикалы), вызывающий активацию нуклеаз, расщепляющих ДНК на фрагменты (рис. 2).
Структуры, участвующие во включении механизма апоптоза
Знания об апоптозе позволили сформулировать понятия позитивной и негативной активации клеток иммунной системы [7], необходимые для оценки их функционального состояния.
Позитивной считается классическая активация лимфоцитов под влиянием специфических или неспецифических стимулов, способствующая реализации клеткой ее эффекторных функций (цитотоксичность, синтез иммуноглобулинов и цитокинов). Позитивная активация сопровождается повышением уровня экспрессии на Т- и В-лимфоцитах ряда активационных маркеров: CD25, CD40L, HLADR и др.
При негативной активации на лимфоцитах появляются активационный маркер CD95 (Fas/APO-l) и его лиганд FasL. Fas/APO-1 способен запускать процесс апоптоза после взаимодействия с лигандом FasL. Вследствие нарушения экспрессии Fas-рецепторов и других звеньев апоптоза развивается аутоиммунный лимфопролиферативный синдром, проявляющийся рядом заболеваний, характеризующихся доброкачественной лимфопролиферацией, гипериммуноглобулинемией и аутоиммунными расстройствами.
Одним из мембранных клеточных рецепторов, ответственных за контролируемый тканевой гомеостаз и иммунный ответ, является Fas-рецептор (CD95/APO-1) – белок с молекулярной массой 45 кD. Его функция связана со скоростью созревания и восстановления пула клеток. Кроме Fas-рецептора на поверхности многих гемопоэтических клеток присутствует еще один мембранный белок Fas-лиганд (FasL). Fas-лиганд имеет растворимую форму в виде белка с молекулярной массой 1,7 × 104 D. Поверхностные молекулы типа CD95 (АРО-1 или Fas-антиген) – важные медиаторы апоптоза. Молекула CD95 принадлежит к рецепторным белкам семейства TNF (tumor necrosis factor – фактор некроза опухоли (ФНО))/NGF (nerve growth factor – фактор роста нервов). При активации АРО-1/Fas-лигандами клетка с рецептором CD95 (АPO-1/Fas-антиген) посылает сигнал апоптоза в ряд клеток, имеющих этот рецептор [3, 8].
Существуют специализированные рецепторы апоптоза, которые относятся к семейству TNF. Их общее обозначение DR (death receptors) (DR1-TNF, DR2 – Fas-рецептор, CD95, DR3, DR3 – DR6). Лигандами для TNFR1 служат TNF и лимфотоксин альфа, для Fas-рецептора – мембранная молекула Fas-лиганд (FasL, CD178), для DR3 – DR3L.
Известно два основных рецептора, принимающих сигналы к развитию апоптоза, – Fas (CD95) и рецептор для TNF типа 1 (р55) TNFR1. Они имеют в цитоплазме «домен гибели», передающий внутрь клетки сигнал гибели (эффекторный ген IСЕ). Генерация внутриклеточных сигналов апоптоза прежде всего связана с белком р53, который экспрессируется при наличии поломок хромосом, разрывов ДНК и других генетических нарушений при разных сигналах, особенно ионизирующей радиации. Оставаясь в сморщенном виде, клетка утрачивает часть генетического (ядерного) материала при апоптозе [4].
Апоптоз сопровождается также активацией ряда генов. Одним из наиболее значимых является интерлейкин (ИЛ) бета-1-конвертирующий фермент (ICE). Для начальной фазы апоптоза также характерно повышение уровня экспрессии эффекторных генов p53, Nur77, c-MYC-белков. В процессе апоптоза помимо генов, вызывающих его (Bax, Bad, Bcl-xs), экспрессируются гены, ингибирующие апоптоз (Bcl-2 кодирует белок, предотвращающий апоптоз). Как следствие – кодирование процесса апоптоза и выживание клеток. Это особенно важно при патогенезе вирусных инфекций. Гены, вызывающие запуск апоптоза, приводят к его развитию (рис. 2).
Пути запуска апоптоза
Существует два механизма запуска гибели клетки – внутренний (митохондриальный) и рецепторный.
Митохондриальный апоптоз развивается при дефиците факторов, обеспечивающих выживаемость клеток (цитокинов и контактных сигналов от соседних клеток), а также под действием цитотоксических агентов (облучение, стероидные гормоны, цитостатики). В результате изменяется баланс митохондриальных факторов семейства Вcl-2 (проапоптотический и противоапоптотический). Через сформированные в мембране митохондрии в цитозоль выходит цитохром C, где он активизирует каспазу 9 путем связывания Apaf-1 с АТФ/дАТФ и прокаспазой 9. После этого дальнейший процесс апоптоза сопровождается образованием новых каспаз и разрушением клетки (рис. 3). В процесс вовлекаются инициаторные каспазы, мишенью которых служат исполнительные каспазы.
Рецепторный путь гибели клеток включается при связывании лигандов с мембранным рецептором клетки.
При связывании Fas-рецептора с Fas-лигандом включается механизм апоптоза. При этом мембраносвязываемый FasL включает сигнал апоптоза при прямом контакте клетки с клеткой, тогда как растворимая форма FasL ответственна за уничтожение клеток по типу аутокринной гибели или паракринной смерти близлежащей клетки.
Митохондриальный и рецепторный пути апоптоза активируют инициаторные каспазы. Следующий этап развития апоптоза является общим для двух указанных вариантов. Инициаторные каспазы активируют исполнительные каспазы 3, 6, 7, главной из которых является каспаза 3 [5, 9]. Мишенями исполнительных каспаз служат многочисленные белки, значительная часть которых локализуется в ядре. Расщепление молекул-мишеней определяет весь спектр проявлений апоптоза. Одна из главных мишеней каспазы 3 – эндонуклеаза CAD осуществляет дегенерацию ДНК, воздействуя на доступные участки молекулы, расположенные между нуклеосомами. Расщепление других мишеней каспаз обусловливают нарушения клеточного цикла, адгезии, клеточной морфологии и др.
Особого внимания заслуживают механизмы апоптоза при цитотоксическом воздействии клеток-киллеров (рис. 4). Специфические Т-лимфоциты-киллеры (CD8+Т-лимфоциты) осуществляют свои киллерные функции по-разному в зависимости от наличия:
Кроме того, гибель клеток-мишеней, покрытых антителами, происходит при активации антителозависимой клеточной цитотоксичности за счет связывания антител с Fc-рецептором на клетках-киллерах (CD16) и выделения протеолитических ферментов.
Гранзимы, в частности гранзим В, активируют каспазу 10. Взаимодействие Fas и FasL активирует каспазу 8, взаимодействие ФНО-альфа и рецептора ФНО-альфа – каспазу 2. Все они способны активировать основную каспазу 3, которую также активирует цитохром С. Активация каспазой 3 каспазы 7, которая активирует ядерные эндонуклеазы, завершается гибелью клетки (первый путь апоптоза). Кроме того, гранзим B способен напрямую активировать каспазу 3 и каспазу 7 (второй путь апоптоза).
Начало индукции апоптоза связано с внедрением в клетку-мишень специфического [10] белка киллерных клеток – перфорина, формирующего в мембранах поры, через которые растворимые гранзимы – сериновые протеазы клеток-киллеров попадают в клетки-мишени. Здесь они активируют целую серию цистеиновых протеаз-каспаз, включающих механизм апоптоза, который завершается активацией эндонуклеаз и фрагментацией ядра. Данный механизм разрушения клеток под влиянием Т-лимфоцитов-киллеров считается классическим при развитии реакции отторжения аллогенных трансплантатов аутоиммунной патологии, разрушении вирусинфицированных и опухолевых клеток [11].
Одновременно со специфическим механизмом киллинга Т-киллер включает и неспецифический за счет связывания свободного Fas-лиганда с Fas-рецептором клетки-мишени, что также приводит к активации цистеиновых протеаз и включению механизма апоптоза.
Апоптотические клетки и их фрагменты быстро элиминируются путем фагоцитоза, чему способствуют нарушение асимметричности мембраны и фосфатидилсерин – фермент, который в норме находится на внутренней поверхности мембраны, а при апоптозе оказывается на ее поверхности. Он распознается молекулой CD14MФ и способствует фагоцитозу клетки, на которой экспрессируется. На поверхности апоптотической клетки появляется тромбоспондин, распознаваемый молекулами адгезии – интегрином альфа-V и бета-3, CD36, через их сигналы он передается внутрь фагоцитирующей клетки и активирует ее метаболизм [9, 12].
Значение апоптоза для обеспечения нормального функционирования организма
Роль апоптоза в жизнедеятельности организма велика и сопоставима с ролью процессов пролиферации и дифференцировки клеток [12], особенно в период онтогенеза при одновременной массовой гибели клеток. У взрослых апоптоз играет ключевую роль в поддержании клеточного гомеостаза, при значительном обороте клеток, межклеточном взаимодействии и селекции клеток, прежде всего при гемопоэзе, воспалении и иммунном ответе.
При дефиците факторов выживания (Т- и B-лимфоциты, ИЛ-17, NK-клетки, ИЛ-15) избыточные клетки удаляются с помощью механизма апоптоза. Для предотвращения апоптоза достаточно индукции или поддержания уровня экспрессии антиапоптотических факторов (Bcl-2, Bcl-x1). Апоптозу подвергаются лимфоциты с нарушением перестройки антиген-распознающих рецепторов и сорецепторов, при дифференцировке субпопуляции Т-клеток [12]. При иммунопатологии и положительной селекции Т-лимфоцитов поддерживаются те клоны Т-лимфоцитов, которые распознают пептиды в составе аутологичных молекул главного комплекса гистосовместимости (ГКГ). Поддержка состоит в индукции экспрессии антиапоптотического фактора Bcl-2. В отсутствие сигналов распознавания ГКГ-клетка подвергается апоптозу [13].
На этапе отрицательной селекции элиминируются клетки, распознающие аутологические пептиды в составе аутологичных молекул ГКГ с высоким сродством. В этом случае, а также при селекции В-лимфоцитов через антиген-распознающий рецептор (TCR в Т-клетках и BCR в В-клетках) в клетки поступает сигнал, приводящий к включению апоптоза для предотвращения развития аутоиммунного процесса [5].
Апоптозу принадлежит важная роль в завершении иммунного ответа. Это проявляется в раннем развитии эффекторных клеток в соответствии с генетической программой (7–10 суток).
Апоптоз также является инструментом чрезвычайной стимуляции клеток при воздействии антигена или ИЛ-2 на предварительно стимулированные клетки. Вместо дополнительной активации включается их апоптоз.
Апоптоз лежит в основе контактного цитолиза клеток-мишеней, обусловленных действием NK-клеток или цитотоксических Т-лимфоцитов. При этом индукция цитолиза может быть вызвана как инъекцией в клетку-мишень гранзима B, так и воздействием на рецепторы апоптоза.
Таким образом, роль апоптоза в иммунной системе состоит в контроле численности клеток клонального состава популяции лимфоцитов, а также в повышении сродства В-лимфоцитов и антител к антигену, ограничении продолжительности иммунного ответа.
Клиническая значимость тестов на апоптоз
Апоптоз и некроз клеток определяют при подготовке суспензии клеток для инъекций (стволовые клетки и клетки, используемые для адаптивной цитотерапии).
Оценка различных типов гибели клеток используется при тестировании лекарственных препаратов, в частности цитостатиков в онкологии.
Апоптоз лимфоидных клеток изучают при анализе механизмов иммунодефицитных состояний с оценкой выраженности индукции апоптоза при активации лимфоцитов.
Спектр биологических свойств интерферона 1-го типа
Противовирусная защита организма интерфероном (ИФН) альфа-2 осуществляется за счет синтеза интерфероновых белков самим организмом в ответ на инфекцию, что обеспечивает перспективность и физиологическую значимость ИФН [14]. Доказано наличие его противовирусного действия, а именно:
ИФН-альфа, продуцируемый дендритными клетками (ДК), макрофагами и лейкоцитами, обладает выраженной противовирусной активностью. В физиологических условиях отсутствует спонтанная выработка ИФН-альфа, но сохраняется выработка его лейкоцитами при инфекциях. Клетки без внедрения вируса нечувствительны и ИФН-альфа не вырабатывают.
Первичная выработка ИФН начинается сразу после проникновения вируса в клетку через входные ворота (носоглотка, глаза, кожа). Развитие инфекции зависит от эффективности противовирусного местного иммунитета. Образованный этими клетками ИФН-альфа не обеспечивает резистентности самих клеток-продуцентов, их определенное количество погибает. Одновременно окружающие клетки под влиянием ИФН приобретают резистентность к вирусам уже через 15 минут после проникновения возбудителя.
Защитное действие ИФН-альфа, выработанного инфицированной клеткой (ДК, лейкоциты), или рекомбинантного ИФН-альфа (Виферон®) после поступления в кровь начинается со связывания со специфическими рецепторами поверхностной клеточной мембраны неповрежденных клеток, по структуре сходных с иммуноглобулином. Количество интерфероновых рецепторов на разных клетках различно, что обусловливает неодинаковую чувствительность ИФН-альфа к тканям. Сами рецепторы для ИФН-альфа отличаются друг от друга, поскольку гены, детерминирующие их синтез, локализованы в разных хромосомах: ИФН-гамма – в 18-й хромосоме, ИФН-альфа/бета – в 21-й хромосоме.
После связывания фероновыми рецепторами на внешней поверхности мембраны ИФН-альфа погружается внутрь клетки-мишени, и эта связь разрывается. Рецептор вновь возвращается на поверхность клетки, а ИФН-альфа внутри клетки через цепь сигнальных механизмов активирует транскрипцию генов, кодирующих выработку ферментов, приводящих к дегенерации чужеродной генетической информации (вирусной, геномной и матричной ДНК). Противовирусное действие ИФН-альфа обеспечивается блоком репликации вирусов на расстоянии через ферменты.
К основным функциям ИФН-альфа относятся подавление репликации вирусов за счет экспрессии противовирусных белков (Мх, GAS, PKR и др.), повышение экспрессии молекул ГКГ первого класса, усиление функции антигенпредставляющих клеток, усиление активности естественных киллеров и индукции Th1-ответа, а также индукция апоптоза.
Вирусы служат индукторами, запускающими ИФН-альфа, они чувствительны к противовирусному действию ИФН-альфа, которое реализуется через общий трансмембранный интерфероновый рецептор IFNAR-1 или IFNAR-2. Действие ИФН-альфа заключается в активации транскрипции генов ряда клеточных белков и осуществляется посредством системы межбелковых взаимодействий «JAK – STAT». Сигнальный путь, инициируемый при связывании ИФН-альфа с рецептором на поверхности клетки, далее через цепь внутриклеточных механизмов активирует транскрипцию генов, индуцируемых ИФН.
Показано, что при активации рецепторов к ИФН помимо активации системы «STAT – JAK» запускаются так называемые альтернативные сигнальные пути, определяющие разные типы биологического действия ИФН-альфа. Одновременно с индукцией транскрипции генов ряда противовирусных белков инфицированной клетки ИФН-альфа индуцирует транскрипцию генов белков – медиаторов апоптоза, таких как:
Наряду с индукцией синтеза противовирусных белков ИФН-альфа активирует апоптоз инфицированных вирусом клеток, что обеспечивает их деструкцию, снижает размножение вируса и распространение инфекции.
Помимо универсального противовирусного и иммуномодулирующего действия ИФН 1-го типа оказывает дополнительное индуцирующее (стимулирующее) или ингибирующее (угнетающее) разнонаправленное действие на различные звенья эпителиальных и иммунных клеток, которые могут опосредовать развитие патологических состояний и тканевых повреждений (в том числе через механизмы апоптоза).
Доказано наличие прямого усиливающего эффекта ИФН-альфа на продукцию ИЛ-10 – противовоспалительного цитокина, который вторично прямо или опосредованно блокирует провоспалительные ИЛ-1, ИЛ-2, ИЛ-17, ИФН-гамма и колониестимулирующий фактор, снижая уровень Т-клеток, ИЛ-12 и ИФН-гамма, приводящих к иммуносупрессии.
Прямое повышение уровня ИЛ-27 под воздействием ИФН-альфа приводит к продукции ИЛ-17 и впоследствии к антибактериальному ответу.
ИФН 1-го типа также оказывает прямой модулирующий (стимулирующий или ингибирующий) эффект в отношении продукции антител и уровня CD8+ цитотоксических Т-лимфоцитов в зависимости от состояния иммунной системы.
Кроме того, доказано прямое влияние ИФН 1-го типа на механизм запуска апоптоза через модуляцию активирующих или ингибирующих его генов.
ИФН-альфа вызывает апоптоз клетки в стадии транскрипции генов белков – медиаторов апоптоза.
ИФН-альфа может также запускать механизм апоптоза прямо через индукцию двух основных мембранных клеточных рецепторов, принимающих сигналы к развитию апоптоза: FAS (CD95-APO 1) и рецептора ФНО 1-го типа TRAIL с их соответствующими лигандами. Эта пара запускает апоптоз – программируемую гибель клеток-мишеней.
Обобщение биологических эффектов ИФН-альфа/бета через механизм апоптоза представлено на рис. 5.
Запускаемый ИФН 1-го типа апоптоз эпителиальных клеток респираторного тракта, гепатоцитов, иммунных Т-клеток, высокостимулированного воспаления может приводить к разрушению тканевых клеток или иммуносупрессии.
Подходы к оценке апоптоза при клинико-иммунологических исследованиях
Определение апоптоза основано на регистрации феноменов, лежащих в его основе. Речь идет о формировании разрывов ДНК, развивающихся вследствие этого деградации и потере клеткой части ДНК, асимметрии мембраны с экспрессией на поверхности необычных молекул, изменении морфологии клетки.
В настоящее время для регистрации апоптоза, в том числе при работе с лимфоцитами, широко применяются методы проточной цитофлуориметрии. При скрининговых исследованиях используется метод, основанный на выявлении гиподиплоидных клеток (утрата части хроматида). Чрезвычайно удобным и информативным считается метод, при котором регистрируется ранний признак апоптоза – экспрессия на поверхности клеток фосфатидилсерина. Для обнаружения экспрессии фосфатидилсерина используют конъюгат аннексина V, который обладает сродством к фосфорилсерину, с флуоресцеинизотиоцианатом. Преимуществом метода является возможность регистрации апоптоза на ранних этапах его развития, а также надежная дифференциация апоптоза от некроза [3, 9].
Оценка экспрессии на поверхности лимфоцитов Fas-рецептора (CD95) и в митохондриях протоонкогена Bcd-2 проводится для выявления высокого риска развития апоптоза. Метод наиболее эффективен при взаимодействии с Fas-рецептором клетки-мишени с помощью проточной цитофлуориметрии. Использование этих комбинаций позволяет оперативно оценить процент лимфоцитов, подвергшихся апоптозу. Еще один важный аспект для оценки апоптоза в клинической практике – использование индукции апоптоза для получения расширенной информации [8, 12].
Помимо подавления трансляции вирусного генома ИФН-альфа индуцирует клеточный апоптоз, способствуя элиминации инфекционного агента за счет гибели клетки.
Регулирование механизмов апоптоза препаратами интерферона в клинической практике при вирусных инфекциях
Вирусы могут оказывать иммуносупрессивное действие, направленное как на нарушение синтеза цитокинов, так и на снижение апоптотической активности клеток, которые персистируют в организме даже в отсутствие активной репликации вируса за счет инфицирования геномом. Определение активности ФНО-зависимых путей апоптоза – классических путей запуска программируемой гибели клеток является адекватной моделью для поиска способов регуляции апоптоза и обоснования методов его коррекции в клинической практике, в том числе с использованием интерфероновых препаратов [5, 12, 15].
Активность ФНО-зависимых путей апоптоза при хронических вирусных инфекциях
При оценке активности ФНО-зависимых путей апоптоза нами был исследован уровень маркеров апоптоза в сыворотке крови пациентов с хроническими вирусными инфекциями: гепатитом B (n = 66), С (n = 37), рецидивирующей герпесвирусной инфекцией (вирус простого герпеса (ВПГ) 1-го и 2-го типов), цитомегаловирусной инфекцией (ЦМВ) (n = 70) и вирусом папилломы человека (ВПЧ) высокого онкогенного риска (n = 94) [16, 17]. При формировании групп учитывали критерии отбора пациентов для обследования, верификацию диагноза на основании клинических и лабораторных данных, тяжесть клинического течения.
В качестве маркеров апоптоза использовали рецепторы, связывание которых с лигандами индуцирует апоптоз в клетке-мишени, являющейся носителем сывороточного растворимого Fas-рецептора (sFas), TRAIL, ФНО-альфа в динамике методом твердофазного иммуноферментного анализа с использованием стандартных тест-систем [7]:
Обследование проводили от начала лечения или с момента рецидива инфекции. Через месяц к стандартной терапии добавляли ациклические нуклеозиды и человеческий рекомбинантный препарат ИФН 1-го типа прямого противовирусного и иммуномодулирующего действия в комплексе с высокоактивными антиоксидантами витаминами E и C (Виферон®) [16, 17].
Результаты исследования активности ФНО-хронических вирусных инфекций представлены в таблице [17].
При поступлении в стационар у больных вирусным гепатитом B отмечалось существенное повышение концентрации sFas. На 30-е сутки после поступления показатели sFas достоверно снижались, но не приходили в норму.
Показатели изменения концентрации sFas при гепатите C были аналогичны показателям при вирусе гепатита B. Даже через 30 дней этот показатель был самый высокий в группах.
При изучении концентрации ФНО в сыворотке крови пациентов с гепатитами зафиксированы данные, сопоставимые с показателями sFas. Наиболее высокие концентрации ФНО наблюдались при гепатите B и достоверно отличались от аналогичных показателей при гепатите С. В отличие от показателей Fas и ФНО показатели TRAIL демонстрировали противоположную тенденцию. Во всех периодах обследования отмечалось достоверное снижение концентрации исследуемого фактора, самые низкие значения наблюдались при гепатите С. При оценке активности апоптоза у больных ВПГ 1-го и 2-го типов отмечалось повышение sFas в момент рецидива в зависимости от степени тяжести: при легкой степени повышение составило 42%, при средней степени – 35%, при тяжелой – 26%. Через 30 суток с момента лечения изменений не зарегистрировано.
Снижение показателя sFas свидетельствует об уменьшении запуска клеткой апоптоза.
Тенденция к снижению TRAIL в сыворотке крови отмечалась у пациентов с более тяжелым течением инфекционного процесса. Концентрации TRAIL оказались достоверно ниже в группе доноров (р < 0,01).
Уровень ФНО-альфа в момент рецидива герпетической инфекции значительно возрастал, оставался высоким через 30 суток с момента лечения (р < 0,01) с положительной корреляцией со степенью тяжести заболевания.
При оценке активности апоптоза у пациентов с ВПЧ 16-го и 18-го типов установлено, что sFas в момент рецидива снижался на 25% по сравнению с донорской группой. Через 30 суток с момента лечения изменений не наблюдалось, что говорило о снижении вероятности запуска клеткой апоптоза и персистенции вируса.
Резко сниженные показатели TRAIL у пациентов c ВПЧ высокого онкогенного риска свидетельствуют о том, что отсутствие TRAIL-рецепторного апоптоза может быть одной из причин рецепторного онкогенеза.
Достоверного снижения исходно повышенного уровня ФНО-альфа (90 ± 3,5%) на фоне комплексного противовирусного лечения не зарегистрировано.
Препараты ИФН альфа-2b, в том числе Виферон®, более цитотоксичны для опухолевых клеток, чем для нормальных [16]. Это обусловлено более сильной двухцепочечной РНК, которая является индуктором ИФН-альфа и оказывает стимулирующее действие на сигнальный ген Fas(CD95)-апоптоза в лимфоцитах пациентов с онкопатологией [16, 19]. Апоптозные эффекты могут быть ассоциированы с индукцией высоких уровней ФНО и усилены препаратами ИФН альфа-2b. Сочетанные проявления индуцирующего и апоптозного действия ИФН указывают на возможность применения препаратов ИФН (Виферон®) при онкологических заболеваниях [20, 21]. Таким образом, среди всех изученных хронических вирусных инфекций [18, 22] только при ВПЧ высокого онкогенного риска (16-й и 18-й типы) существенно снижается возможность организма элиминировать персистирующую вирусную инфекцию. Подтверждение тому – сниженный сывороточный уровень растворимого лиганда к sFas-рецептору и TRAIL. ФНО-альфа-зависимые пути противовирусной защиты активированы во всех исследуемых группах пациентов с хроническими вирусными инфекциями. При этом уровень ФНО-альфа служит показателем активности воспаления и коррелирует с тяжестью течения инфекционного процесса, что позволяет использовать его в качестве диагностического критерия при скрытых инфекциях. Включение в комплексную терапию препаратов ИФН-альфа (1-го типа) целесообразно для модуляции сниженной активности ФНО-зависимых путей апоптоза при хронических вирусных инфекциях, в том числе высокого онкогенного риска [23].
Заключение
В настоящее время доказано участие системы интерферона в процессе апоптоза. Цикл противовирусного действия ИФН-альфа/бета (1-го типа) сопровождается такими процессами, как иммуномодуляция, индукция апоптоза, блокада пролиферации клеток, регулируемых интерферонами. Это говорит о разнонаправленном действии ИФН-альфа/бета.
Поскольку апоптоз – физиологический процесс, в организме имеется множество специфических факторов ингибирующего или регуляторного действия, запускающих процесс апоптоза клетки. К факторам регуляторного действия относится большая группа белков – цитокинов, регулирующих пролиферацию и дифференцировку клеток при связывании со специфическими рецепторами на клетках-мишенях и при патологических ситуациях. Доказано также участие белков интерфероновой системы в процессе регуляции апоптоза при разных патологиях, что особенно важно при вирусных инфекциях.
Условно весь процесс апоптоза может быть разделен на две фазы – формирование и проведение апоптотических сигналов и демонтаж клеточных структур с участием особых протеаз (каспаз).
Принято выделять два взаимосвязанных механизма активации каспаз – рецепторный (на поверхности неповрежденных клеток) и митохондриальный (для патологически измененных клеток).
При исследовании апоптотических свойств ИФН-альфа/бета (1-го типа) доказана его способность вызывать ингибирование апоптогенного сигнала для моноцитов (один из механизмов гибели клеток).
Виферон® – препарат ИФН 1-го типа также является ингибитором апоптогенного сигнала для моноцитов. ИФН альфа-2b вызывает апоптоз клеток в стадии транскрипции через активацию генных белков.
Особо следует отметить роль белка Вid – связующего звена между рецепторным и митохондриальным механизмами активации каспаз.
Таким образом, актуальность изучения процесса апоптоза с выявлением механизмов нарушения его регуляции, сопровождаемых конкретными заболеваниями, позволяет определять этиологию и патогенез данных заболеваний и возможность коррекции нарушения регуляции программируемой гибели клетки.
Идентификация и регуляция морфологических и биохимических маркеров апоптоза, включая апоптоз специфических генов, важны для понимания механизма патогенеза заболевания, дифференциальной диагностики и разработки принципиально новых направлений терапии.
Включение в схему комплексного лечения препарата Виферон® подтверждает его эффективность в коррекции уровня апоптоза в зависимости от клинико-иммунологической патологии ФНО-зависимых путей апоптоза при хронических вирусных инфекциях, в том числе высокого онкогенного риска.