Введение
Показатели заболеваемости детей раннего и младшего возраста существенно выше, чем у более старших детей и подростков. Особенности развития ребенка младшего возраста определяют его дальнейшие показатели здоровья. Быстрый переход из чрезвычайно щадящих условий внутриутробного существования во внешний мир приводит к резкой активации иммунной системы. Инфекционные и другие факторы стимулируют развитие приобретенного (адаптивного) иммунитета. Но многие внешние факторы способны нарушить формирование иммунитета. Хронические воспалительные заболевания – атопия, метаболические расстройства закладываются на первых этапах постнатального развития [1, 2]. На формирование и функциональную активацию иммунокомпетентных клеток влияют тип родоразрешения, питание, образ жизни и особенно формирующаяся микробиота [3, 4]. Знание механизмов и условий формирования иммунитета позволяет своевременно проводить научно обоснованные профилактические мероприятия.
Начало формирования иммунитета
Формирование иммунитета у плода и новорожденного начинается на самых ранних этапах внутриутробного развития. Первые иммунокомпетентные клетки (моноциты-макрофаги) обнаруживаются уже на первом месяце первого триместра беременности [5]. С восьмой недели появляются нейтрофилы и естественные клетки-киллеры (NK). Их пиковые концентрации отмечаются к моменту рождения. С восьмой недели появляются редкие предшественники – В- и Т-клетки. Наивные Т-клетки (NT) регистрируются с 12-й недели. Они представлены в основном популяцией gd-T-клеток, которые с 32-й недели в подавляющем большинстве замещаются альфа/бета-Т-клетками. На 12-й неделе появляются незрелые В-клетки. Первые зрелые фетальные B1-клетки обнаруживаются с 14-й недели. Таким образом, первые клетки врожденного и адаптивного иммунитета появляются очень рано, но их эффекторные свойства на протяжении всего внутриутробного периода выражены очень слабо [6, 7]. Вполне вероятно, что это условие толерантности к антигенам матери и соответственно условие вынашивания плода. Одновременно печень плода в больших количествах синтезирует альфа-фетопротеин, обладающий свойствами иммуносупрессии и предохраняющий мать и плод от аутоиммунной реакции «трансплантат против хозяина». Иммунная система плода по своей природе толерантна (избегание воспалительной реакции). Фетальные CD4+-Т-клетки плода при стимуляции дифференцируются в регуляторные Т-клетки (Treg), обеспечивая толерантность к аутоантигенам плода и чужеродным материнским антигенам. Индукция Т-хелперных клеток 1-го типа (Th1) – провоспалительных клеток менее чувствительная и слабая по сравнению со взрослыми. Таким образом, успешное вынашивание беременности зависит от тонкого баланса между двумя противоположными иммунологическими силами: полуаллогенный плод учится переносить как собственные, так и материнские антигены (толерантность) и одновременно развивает защитный иммунитет при подготовке к рождению. Это критическое окно иммунного развития объединяет пренатальную иммунную толерантность с необходимостью постнатальной защиты окружающей среды, что делает ребенка в неонатальном периоде более уязвимым к заражению [8]. Этапы количественного и качественного развития иммунокомпетентных клеток у плода и ребенка представлены в таблице [5].
Как видно из таблицы, динамика численности и активности иммунокомпетентных клеток по достижении оптимума может варьироваться, что частично объясняет феномен так называемых часто болеющих детей. Возникает закономерный вопрос: чем обусловлен такой разброс срока достижения оптимума численности и активности иммунокомпетентных клеток – генетическим факторами, влиянием внешней среды или вариабельной комбинацией intrisic и extrinsic факторов?
Иммунитет новорожденного – производное иммунной системы плода. Способность выраженного иммунного ответа не сформирована. Но уже внутриутробно заложены системы эффективного ответа. В частности, вакцина BCG индуцирует эффективный Th1-ответ, сравнимый с ответом клеток взрослого человека. Поэтому и ранняя вакцинация от туберкулеза оказывается эффективной и предупреждает не только инфекцию, но и атопию [9]. То есть за счет общих механизмов несовершенная противоинфекционная защита предрасполагает к аллергии, что объясняет феномен часто болеющих детей. В эксперименте в первые дни постнатального периода дендритические клетки в легких новорожденных мышей продемонстрировали способность к высокой экспрессии клеточных маркеров активации, включая ICOSL (лиганд-индуцибельный костимулятор Т-клеток) и PD-L1 (программированный лиганд смерти 1), и чрезвычайную эффективность при захвате и процессинге антигенов. Это свидетельствует о биологической целесообразности топики и активности иммунных реакций: легкие как орган, подвергающийся атаке антигенов с момента первого вдоха, не только сами защищены, но и защищают макроорганизм. Таким образом, иммунокомпетентные клетки новорожденного нельзя назвать абсолютно незрелыми, хотя различия с иммунокомпетентными клетками взрослых имеются. В частности, зрелые В-клетки и лимфоидные структуры необходимы для взаимодействия с Тh, что обусловливает иммунный ответ. Функционально незрелые В-клетки ребенка раннего и младшего возраста не способны к такому взаимодействию. Как следствие – затрудняется выработка антител, отмечается длительный ответ на введение вакцины [10]. В качестве фактора, оптимизирующего функциональное созревание В-клеток, может выступить своевременная микробная колонизация. Экспериментально доказано, что способность синтезировать иммуноглобулин (Ig) E определяется микробной колонизацией в раннем возрасте. Скудость микробного пейзажа в раннем возрасте у старших детей и взрослых приводит к гиперпродукции IgE В-клетками [11]. Реактивность адаптивной иммунной системы взрослых объясняется особенностями созревания адаптивной системы младенца.
Высокая способность CD4+-Т-клеток плода дифференцироваться в клетки Treg и их смещение к иммунитету Th2 (предотвращение воспалительной реакции) сохраняются и в неонатальном периоде. Это делает новорожденного и ребенка раннего возраста восприимчивым к инфекциям. Т-клетки плода не способны в достаточной степени синтезировать интерферон (ИФН) гамма [12, 13], необходимый для эффективного противоинфекционного ответа. Одновременно переход иммунного ответа Th2 в Th1 тормозит курение матери, что также создает условия для повторных инфекций и склонности к аллергии.
После рождения происходит резкий подъем гранулопоэза с физиологическим нейтрофилезом. Это приспособительная реакция в ответ на стремительно возросший контакт ребенка с микробами и вирусами. Но функциональная активность нейтрофилов младенца (хемотаксис, фагоцитарная способность) по сравнению со взрослыми снижена. Снижена и цитотоксическая активность неонатальных NK-клеток, что обусловлено цитокиновой средой новорожденного [14].
Факторы, влияющие на развитие иммунитета
Среда внутри матки традиционно считается стерильной, хотя плацента содержит собственную микробиоту [15], то есть в утробе матери имеет место микробное влияние на плод. Между матерью и плодом происходит постоянное взаимодействие. На плод и постнатальное развитие влияют хронические заболевания матери и многие другие факторы: нарушения питания, стресс, инфекция, курение, употребление алкоголя, прием лекарственных препаратов, контакт с животными и растениями, родоразрешение путем кесарева сечения, микробиота, характер вскармливания ребенка и его контакты с животными и растениями. В частности, курение не только вызывает задержку в созревании легких плода, но и провоцирует развитие врожденных пороков сердца, диабета 1-го типа, хронических воспалительных заболеваний, сокращение популяций клеток Treg [16].
Питание и стресс матери определяют развитие плода. Дефицит белка, витаминов и минералов сопровождается нарушением функции Т-клеток, снижением активности В-клеток и дефицитом IgG, преждевременными родами и дефицитом витаминов и минералов у ребенка [17]. Недостаток витамина A тормозит дифференцировку лимфоидной ткани. Витамин D усиливает подавляющую способность клеток Treg, снижая иммунитет Th1. Переедание и ожирение матери – фактор риска ожирения, атопии, воспалительных и метаболических заболеваний у потомства. В эксперименте доказано, что у потомства ожиревших самок количество лимфоцитов и антигенспецифических антител снижено [18, 19]. Страх и тревога матери приводят к нарушению пролиферации и функции лимфоцитов, снижению цитотоксичности NK-клеток, слабым реакциям адаптивного иммунитета. В некоторой степени иммуносупрессия у потомства обусловлена глюкокортикоидами (гормонами стресса), передаваемыми плоду через плаценту.
Факторы окружающей среды, способствующие постнатальному созреванию иммунитета, через баланс генетических и внешних факторов регулируют соотношение иммунотолерантности и иммунной активации. Естественные вагинальные роды в противоположность родоразрешению с помощью операции кесарева сечения за счет стресса с выбросом катехоламинов, кортизола и дофамина увеличивают хемотаксис нейтрофилов, задерживают их апоптоз, повышают реактивность к липополисахаридам, входящим в состав микробных клеток. В результате повышается микробицидная активность нейтрофилов. Одновременно увеличиваются количество моноцитов и экспрессия ими Толл-подобных рецепторов 2 и 4, что еще больше способствует противоинфекционной защите [20, 21]. Увеличение численности NK-клеток обеспечивает еще один механизм защиты первой линии от неонатальных инфекций. То есть вагинальные роды готовят новорожденного к непосредственному риску заражения.
Грудное молоко не только немедленно защищает от инфекции, но также влияет на созревание иммунитета у новорожденного. С грудным молоком от матери ребенку передаются макрофаги, нейтрофилы и лимфоциты, которые напрямую участвуют в иммунных реакциях защиты и влияют на фенотип неонатальных иммунных клеток, особенно В- и Т-клеток. Помимо иммунокомпетентных клеток с грудным молоком передаются иммунологически активные вещества: гормоны (например, эстроген и прогестерон), факторы роста (в частности, эпидермальный фактор роста и инсулиноподобный фактор роста), множество цитокинов. Основной цитокин, содержащийся в грудном молоке, ИЛ-10 вырабатывается преимущественно эпителиальными клетками молочной железы и является мощным противовоспалительным соединением, обеспечивая толерантность к пищевым аллергенам [22, 23]. Это противовоспалительная активность поддерживается содержащимися в грудном молоке лактоферринами, короткоцепочечными жирными кислотами и длинноцепочечными полиненасыщенными жирными кислотами. Еще один компонент грудного молока – олигосахариды (ОПС). Они обладают иммуномодулирующим эффектом, способствуя синтезу ИФН-гамма в Т-клетках пуповинной крови и ослабляя реакции Th2-типа [24]. ОПС действуют как противовоспалительные молекулы, ингибируя образование комплексов «тромбоциты – нейтрофилы», высокоактивных форм нейтрофилов, готовых к адгезии, фагоцитозу и немедленному производству перекисей [25]. ОПС предотвращают адгезию возбудителей к эпителию кишечника, блокируя взаимодействия патогенных бактерий с их различными партнерами. ОПС считаются пребиотиками, способствуют росту кишечных бифидобактерий у младенцев, находящихся на грудном вскармливании. Более того, грудное молоко имеет собственную микробиоту [26], которая переносится в ребенка и участвует в созревании иммунной системы путем формирования микробиоты кишечника.
Влияние раннего применения антибиотиков изучено не полностью. Известно, что они изменяют состав микробиоты, влияя на число и функцию иммунных клеток. В частности, макролиды оказывают противовоспалительное действие, подавляя выработку провоспалительных цитокинов [27, 28], нарушая рекрутинг нейтрофилов, активацию и изменение функции дендритных клеток [29]. Таким образом, отдельные подклассы антибиотиков характеризуются иммуномодулирующим эффектом, который при их неоднократном или длительном применении отражается на созревании иммунной системы новорожденного.
Микробиота – регулятор иммунной функции. Все указанные выше факторы влияют на микробиоту. Вагинальные роды способствуют колонизации Enterobacteriaceae, Bifidobacterium, Lactobacillus с относительным дефицитом типичных деградаторов сложных углеводов типа Clostridia и создают более разнообразную микробиоту по сравнению с детьми, рожденными в результате кесарева сечения [11]. Грудное молоко – источник бактерий, колонизирующих кишечник. Наиболее распространенными из них являются бифидо- и лактобактерии. Микробный состав меняется при переходе на плотную пищу [30]. Микробная колонизация в раннем возрасте определяет иммунный фенотип. Микробы колонизации раннего возраста имеют решающее значение для индукции клеток Treg в легких и развития толерантности к аэроаллергенам в старшем возрасте. Лечение антибиотиками в первые три недели жизни связано со снижением микробного разнообразия в это время и увеличением аллергических реакций дыхательных путей во взрослом возрасте. В эксперименте на животных показано, что отсутствие микробиоты в раннем возрасте приводит к накоплению инвариантных естественных Т-киллеров, что повышает вероятность развития астмы и воспалительных заболеваний кишечника [31].
Таким образом, сроки формирования и состав микробиоты существенно влияют на процесс формирования иммунитета в периоде новорожденности и определяют особенности иммунитета на протяжении всей жизни.
Заключение
Ранний период жизни считается решающим в становлении иммунной функции и противоинфекционной защиты, определяет показатели здоровья и вероятность развития болезней в дальнейшем. Микробное воздействие в первые две недели жизни имеет решающее значение. Подобное воздействие в более позднем возрасте не может полностью восстановить иммунную систему. Дальнейшие исследования позволят разработать рациональные стратегии профилактики.