

Российская медицинская академия непрерывного профессионального образования

«Когнитивные» нарушения равновесия и ходьбы

О.А. Ганькина, к.м.н., Е.Е. Васенина, д.м.н., проф., О.С. Левин, д.м.н., проф.

Адрес для переписки: Елена Евгеньевна Baceнина, hel_vas@mail.ru

Для цитирования: Ганькина О.А., Васенина Е.Е., Левин О.С. «Когнитивные» нарушения равновесия и ходьбы. Эффективная фармакотерапия. 2025; 21 (43): 40–48.

DOI 10.33978/2307-3586-2025-21-43-40-48

Неустойчивость, нарушение равновесия и снижение памяти – наиболее частые жалобы пациентов пожилого возраста. Когнитивные процессы являются неотъемлемой частью поддержания баланса, устойчивости, они участвуют в контроле и регуляции ходьбы и любого двигательного акта. Когнитивный дефицит служит негативным предиктором, определяющим риск дальнейшего прогрессирования неустойчивости и склонности к падениям. Верно и обратное: как показывают результаты проспективных исследований, у пожилых пациентов с замедлением скорости ходьбы существенно повышается риск дальнейшего развития деменции. Таким образом, постуральная неустойчивость, нарушение ходьбы и когнитивные расстройства тесно связаны. Чаще всего коморбидность когнитивных и двигательных расстройств обсуждается в рамках цереброваскулярной патологии, однако подобное сочетание может встречаться и при нейродегенеративной патологии, в частности болезни Альцгеймера. В 2013 г. было предложено понятие синдрома моторного когнитивного риска – симптомокомплекса, выявление которого позволяет с высокой вероятностью прогнозировать дальнейшее развитие деменции. Его активная интеграция в клиническую практику позволит своевременно выявлять пациентов высокого риска, более дифференцированно подбирать терапию, что в конечном итоге улучшит качество оказания медицинской помощи таким пациентам.

Ключевые слова: постуральная неустойчивость, когнитивные нарушения, дисциркуляторная энцефалопатия, инсульт, синдром моторного когнитивного риска, ацетилхолин

Постуральная неустойчивость и когнитивные функции

Нарушение равновесия, равно как и нарушение памяти, – самая частая жалоба, предъявляемая пациентами пожилого возраста на амбулаторном приеме у невролога [1]. Поддержание устойчивости является сложным многокомпонентным процессом, включающим прием, интеграцию и обработку сенсорных стимулов (когнитивный компонент), а также планирование и выполнение моторных актов [2]. Именно поэтому формирование постуральной (posture – поза, осанка, положение) неустойчивости может быть следствием как двигательных, так и когнитивных расстройств.

Постуральный контроль основан на постоянном поддержании вертикальной оси с возможностью быстрого перестроения центра тяжести при его малейшем

отклонении от первоначальных параметров. Это обеспечивается за счет постоянной интеграции информации, поступающей от соматосенсорной (восприятие самого тела) и вестибулярной систем, а также от зрительного и слухового анализатора [3].

Проприоцептивные рецепторы участвуют в восприятии информации, поступающей от суставов, что позволяет проследить наличие в них пассивных или активных движений, оценить направление движения относительно других суставов и окружающей среды. Эти данные комбинируются с сигналами от афферентов мышечных веретен, которые оценивают положение и степень растяжения мышц, а также с информацией от кожных рецепторов. Все это в целом дает возможность сформировать представление об общей схеме тела человека, положении тела в пространстве и определить его вертикальную ось [4].

Вестибулярный аппарат несет в себе дополнительную информацию и позволяет контролировать любые отклонения вертикали, запуская процесс мышечносуставного перестроения для обеспечения устойчивости тела и поддержания равновесия. Зрительный, тактильный, слуховой анализаторы также способствуют поступлению информации о положении тела в пространстве, но при этом в них самих заложена информация об изменении условий среды, что помогает лучше контролировать баланс и устойчивость [5]. Информация о положении тела, поступающая по вес-

Информация о положении тела, поступающая по вестибулярным, соматосенсорным и зрительным путям, частично дублируется. Одновременная работа этих трех систем в условиях нарушенной проприоцепции позволяет поддерживать постуральный контроль. Причем данные, поступающие от визуального анализатора, видимо, играют более значимую компенсаторную роль, чем данные, поступающие от вестибулярного анализатора. Например, у пациентов с повторяющимися падениями, грубым нарушением постурального контроля риск падений резко возрастает при закрывании глаз, что указывает на зависимость постуральной устойчивости от визуальной информации [6].

Нормальное когнитивное функционирование является неотъемлемой частью поддержания устойчивости и формирования адекватных двигательных актов. Внимание, зрительно-пространственные функции позволяют составить представление о положении тела в пространстве, при необходимости инициировать отклонение оси тела под воздействием каких-либо внешних факторов (движение предметов или окружающих людей), а также при возникновении опасности или угрозы обеспечить реакцию «замри» или инициировать стрессовый ответ. И если раньше адекватный постуральный контроль считался исключительно рефлекторным процессом, сейчас все чаще высказывается мнение о существенной роли корковых отделов в поддержании устойчивости [3]. Действительно, именно кора, интегрируя всю поступающую информацию, участвует в выборе оптимальной стратегии для поддержания равновесия, обеспечивая переход от сенсорной афферентной к моторной эфферентной системе. Так, исследования биологической обратной связи подтверждают наличие корковых модуляций в ответ на любые нервно-мышечные сигналы [7]. Нейрофизиологические исследования демонстрируют прямую зависимость постуральной устойчивости от активности в передней поясной, префронтальной и задней теменной коре. Адекватность работы сенсорных систем - неотъемлемой части постурального контроля - напрямую связана с представленностью тета-диапазона в области лобных и теменных долей [8], а мышечная афферентация коррелирует с мощностью бета-диапазона в сенсомоторной коре [9]. Кроме того, обнаружено, что всплеск амплитуды гамма-волн обрабатывает инициацию компенсаторного движения назад, когда равновесие находится под угрозой [10]. О важной роли корковой афферентации в поддержании баланса говорят и исследования с усложненной задачей. Показано, что при закрывании глаз или усложнении позы путем перемещения одной ноги перед другой степень устойчивости напрямую связана с увеличением уровня мощности бета- и сигмадиапазона в центральных и теменных областях [11]. При условно-вестибулярных причинах нарушения устойчивости способность устоять определяется двусторонней активацией височно-теменных корковых областей [12]. Таким образом, корковая модуляция по сути формирует обратную сенсорную связь, что необходимо для произвольных постуральных корректировок, без которых поддержание устойчивости и баланса невозможно.

Эти выводы подтверждают данные, полученные с помощью структурной нейровизуализации: установлены прямые корреляционные связи между способностью к поддержанию равновесия и общим объемом серого вещества. Верно и обратное: атрофические изменения в корковых отделах достоверно связаны с нарушением постурального контроля и высоким риском падений. Особенно значимыми зонами у лиц с постуральной неустойчивостью являются островок, таламус, верхняя теменная кора и височно-теменной стык [13], а также, вероятно, первичная моторная и премоторная кора [14].

Вовлечение корковых отделов в процесс обеспечения постурального контроля позволяет предположить, что поддержание устойчивости напрямую зависит от состояния когнитивных функций. Роль сенсорных систем и адекватной когнитивной обработки существенно возрастает при нарушении процесса проприоцепции. Это крайне актуально для пожилых людей, ведь с возрастом суставы деформируются, значительно увеличивается распространенность остеоартрозов и воспалительных заболеваний опорно-двигательного аппарата, а следовательно, нарушается работа суставных рецепторов. Кроме того, чем старше человек, тем выше риск развития саркопении. Саркопения (от греч. sarx - тело, плоть, репіа - снижение) - прогрессирующее и генерализованное снижение мышечной массы и силы - также часто сопровождает процесс старения. У людей в возрасте 65 лет и старше мышечная масса теряется со скоростью 0,64-0,70% в год от исходного уровня у женщин и 0,80-0,98% - у мужчин. Мышечная сила теряется с еще большей скоростью: 2,5-3,0% в год у женщин и 3-4% - у мужчин [15]. Естественно, это приводит к мышечной атрофии и дополнительно нарушает адекватное восприятие схемы тела. Процесс усугубляется утратой кожной афферентации, а также возрастными изменениями вестибулярного аппарата. В итоге постуральный контроль начинает сильнее зависеть от возможностей произвольного контроля, состояния сенсорных анализаторов и когнитивной обработки поступающей от них информации. Именно поэтому многоцентровые исследования демонстрируют прямые корреляционные связи между показателями постуральной устойчивости и оценками нейропсихологических тестов.

У пациентов с когнитивной дисфункцией нарушается способность поддержания устойчивости, заметно возрастает риск падений.

Методы выявления постуральной неустойчивости

Существует два основных показателя, оценивающих равновесие: статическая постуральная устойчивость на неподвижной опоре и динамическая постуральная устойчивость, которая определяется с помощью балансировочной доски во время процедуры качания, когда поза человека намеренно нарушается и его центр тяжести постоянно смещается.

Для проверки статической постуральной устойчивости обычно используют толчковую пробу (проба Тевенара): врач встает позади больного и, предупредив, подталкивает его за плечи на себя с такой силой, чтобы пациент сделал шаг назад. В норме пациент ловит равновесие, рефлекторно наклоняя туловище вперед или делая еще один-два шага назад. При постуральной неустойчивости он медленно, как подпиленное дерево, падает без какой-либо попытки удержать равновесие или делает несколько дополнительных мелких шажков назад (ретропульсия). Еще один способ выявления статической постуральной устойчивости – функциональный тест на досягаемость: пациент, оставаясь на месте, пытается дотянуться как можно дальше вперед [16, 17].

При оценке динамической постуральной устойчивости кажущаяся простой задача устоять неподвижно на движущейся доске требует множественных сенсорных стимулов для поддержания вертикального равновесия, включающих адаптацию к колебаниям, игнорирование отвлекающих факторов в окружающей среде, которые конкурируют с необходимой для устойчивости сенсорной информацией [18]. Следовательно, оценка динамического баланса, особенно с дополнительной когнитивной задачей, считается более чувствительным инструментом для оценки постуральной неустойчивости, так как включает комплекс различных систем, участвующих в поддержании равновесия. Показано, что оценка динамической устойчивости в аспекте выявления риска падений более эффективна, чем тест на статический баланс. Такой подход должен активнее внедряться для лиц высокого риска, к которым относится большинство пожилых людей. Вариантами проведения данного теста считаются компьютерная динамическая постурография с использованием элементов виртуальной реальности, а также предложенный Z. Halmi и соавт. тест с передачей вокруг тела из руки в руку мячей разного веса [16, 19].

Нарушение ходьбы и когнитивные функции

Если даже в неподвижном состоянии равновесие человека во многом определяется состоянием систем, обеспечивающих постуральный контроль, очевидно, что способность ходить напрямую зависит от состояния постуральной устойчивости и ее регуляции. В динамических и нестабильных условиях, когда ось тела постоянно смещается, необходимо не только

постоянно поддерживать тело в вертикальном положении, но и подстраивать вертикаль с учетом постоянного движения вперед [4].

Даже при обычной ходьбе по ровной местности в абсолютно спокойных условиях при подъеме маховой ноги тело теряет равновесие и центр тяжести выходит из опорного основания. Для продолжения движения работа центра тяжести восстанавливается с помощью антигравитационных мышц [20]. Неожиданные изменения во время ходьбы также приводят к мышечным перестроениям, в результате могут изменяться длина и частота шага, что позволяет быстрее вернуться в устойчивое положение [1]. При нарушении восприятия схемы тела и вертикальной оси коррекция старого центра тяжести и формирование нового будут ограниченны, что приведет к неустойчивости, нарушению шага и замедленности. Устойчивость при ходьбе значительно усугубляют позные расстройства. Две трети веса человека и его центр тяжести приходятся на верхнюю половину тела. Поэтому наличие позных деформаций в данной области приводит к тому, что при ходьбе голова пациента, наклоняясь вперед в попытке догнать свой центр тяжести, наоборот, еще больше смещает его, способствуя развитию пропульсий - пробежек при ходьбе и семенящей походки, что также увеличивает вероятность падений [1].

При ходьбе в сложных условиях, то есть при наличии множества помех и дополнительных факторов, способных привести к отклонению оси тела и изменению траектории движения (люди, светофоры, машины, неровности на дороге и т.д.), значимость слаженной работы систем постурального контроля увеличивается в разы. Кроме того, движение невозможно без адекватного восприятия окружающей среды и напрямую зависит от внимания, скорости переключения, нормальной работы зрительно-пространственных и регуляторных функций, то есть неразрывно связано с когнитивными процессами. В норме при любой дополнительной когнитивной нагрузке (например, разговор по телефону, требующий принятия решения) скорость ходьбы значительно замедляется, вплоть до полной остановки, поскольку внимания оказывается недостаточно для обеспечения полной безопасности движения.

Современные клинические исследования подтверждают постулат, что нарушение движения тесно связано с когнитивными расстройствами и даже может служить предиктором их развития. Различные метаанализы показывают, что замедление скорости ходьбы коррелирует с нейропсихологическими оценками. Так, по сравнению со скоростью ходьбы здоровых людей у людей с когнитивными нарушениями она снижается на 0,11 м/с на начальных стадиях, на 0,20 м/с – при легкой деменции и на 0,41 м/с – при умеренной деменции. Скорость ходьбы снижается даже в отсутствие первично-двигательного дефицита, что подчеркивает роль именно когнитивных функций в развитии подобных нарушений. В мета-анализе с участием почти 30 тыс. человек показано,

что замедление ходьбы является неблагоприятным фактором, определяющим высокий риск дальнейшего развития когнитивного снижения [21].

Действительно, любой двигательный акт требует планирования и траектории выполнения, что является «зоной ответственности» когниции. Неудивительно, что процесс ходьбы и когнитивные функции имеют нейроанатомические «точки пересечения». Так, снижение метаболизма в задней части поясной извилины и первичной сенсомоторной коре, по данным позитронно-эмиссионной томографии с фтордезоксиглюкозой, напрямую коррелирует как с когнитивным, так и с двигательным дефектом, определяя и замедление скорости походки, и нарушение регуляторных функций. Это подчеркивает их неразрывное взаимодействие и интеграцию [22].

Помимо структурных переплетений существует нейрохимическая теория коморбидности двигательных и когнитивных расстройств. Показано, что нарушение постурального контроля и первично-когнитивные расстройства сопровождаются значительным холинергическим дефицитом, а при их сочетании степень холинергической денервации многократно увеличивается. Именно поэтому применение препаратов с холинолитическим действием ассоциируется с высоким риском падений. Исследования функциональной нейровизуализации показали, что адекватная двигательная активность и состояние устойчивости непосредственно связаны с активностью педункулопонтинного ядра в стволе мозга [23]. Возможности когнитивной деятельности во многом определяются состоянием ядра Мейнерта, прилежащего к энторинальной коре. Обе эти структуры состоят из холинергических нейронов и по сути обеспечивают основной пул холинергических влияний на вещество мозга [24]. Соответственно в условиях холинергического дефицита, к которому приводят как возрастные изменения, так и огромный пул неврологической патологии (цереброваскулярная и нейродегенеративная патология), за счет вовлечения обеих структур можно наблюдать комбинацию двигательных и когнитивных расстройств. Пожалуй, самым ярким примером подобного пересечения служит дисциркуляторная энцефалопатия.

Нарушения ходьбы, равновесия и когнитивная дисфункция при хронической цереброваскулярной патологии

Дисциркуляторная энцефалопатия – самое частое цереброваскулярное заболевание среди лиц пожилого возраста. В основе данного состояния лежит многоочаговое или диффузное ишемическое поражение головного мозга, основным этиологическим фактором развития которого является артериальная гипертензия, вызывающая артериосклероз (липогиалиноз) мелких пенетрирующих артерий и артериол (гипертоническая артериопатия). Развивающееся поражение мелких мозговых артерий (церебральная микроангиопатия) приводит прежде всего к нарушению кровоснабжения глубинных отделов

мозга, а нарушение кровоснабжения глубинных отделов - к нарушению работы базальных ганглиев, корково-подкорковых связей, ходьбы и когнитивным расстройствам. Сосудистые изменения влияют не только на кровоток. При наличии микроинфарктов, кистозно-глиозных изменений могут возникать и структурные дефекты [25]. Структурное повреждение вещества мозга, особенно в области проводящих путей, ответственных за контроль движения, приводит к развитию нарушения равновесия и ходьбы. Так, расположение сосудистых очагов вдоль длинных петлевых трактов сопровождается развитием постуральной неустойчивости. Исследование с участием 431 пациента в возрасте 50-85 лет показало, что на ходьбу влияет как гиперинтенсивность белого вещества, так и лакунарные инфаркты [26]. Нарастание сосудистых изменений способствует замедлению скорости ходьбы. Показатели скорости ходьбы составляют 1,24, 1,18 и 1,09 м/с в группах с легкой, средней и тяжелой степенью гиперинтенсивности белого вещества соответственно [27].

Наверное, наиболее значимой причиной нарушений ходьбы у пациентов с микроангиопатией является нарушение корково-подкорковых связей в рамках симптомов разобщения, что приводит к нарушению сложной регуляции двигательного акта. Нарушение коркового контроля и, как следствие, сбой «программирования» движения объясняют особенности расстройств движения при хронической сосудистой патологии. Пациент, демонстрирующий грубые нарушения акта ходьбы с топтанием на месте, застыванием и неспособностью передвигаться вперед, может прекрасно имитировать эти движения лежа на кровати. То есть, когда двигательный акт происходит автоматически и не требует когнитивного контроля и регуляции программы в условиях сложной окружающей среды, никаких расстройств у пациентов может не выявляться.

Расстройства движений усугубляет развивающаяся в рамках дисциркуляторной энцефалопатии дисфункция дорсолатерального префронтального нейронного круга, приводящая к возникновению дизрегуляторного когнитивного дефицита. Нарушение инициации, планирования, поэтапной реализации ментальных действий, когнитивной гибкости (способность к переключению) и сбой контроля достижения запланированного результата, несомненно, негативно влияют на равновесие и ходьбу, особенно во внезапно меняющихся условиях [28]. Несмотря на то что двигательный дефект при дисциркуляторной энцефалопатии считается явным и инвалидизирующим, именно когнитивные нарушения определяют тяжесть заболевания, так как во многом обусловливают двигательные проблемы.

Нарушения ходьбы, равновесия, когнитивная дисфункция и инсульт

Инсульт также приводит к развитию когнитивных нарушений и расстройству равновесия и ходьбы. На фоне поражения крупных сосудов развиваются

обширные (территориальные) корковые или подкорковые инфаркты, вследствие чего нарушаются связи коры головного мозга с подкорковой областью. Кроме того, остро возникающий очаговый дефицит со слабостью в нижних конечностях способствует нарушению поддержания равновесия. В течение десятилетий считалось, что основной причиной постуральной неустойчивости после инсульта является асимметрия опоры на нижнюю конечность. Однако если симметрия опоры между паретичной и непаретичной ногой возвращалась к исходному уровню, то постуральная устойчивость у пациентов после инсульта полностью не восстанавливалась, причем в более тяжелом положении оказывались пациенты пожилого возраста. В исследовании постуральной устойчивости у пациентов моложе и старше 65 лет, перенесших инсульт, у участников моложе 65 лет наблюдалась хорошая устойчивость в вертикальном положении. В то же время у представителей старшей группы отмечалась постуральная неустойчивость, оцениваемая статической постурографией как с открытыми, так и с закрытыми глазами, по сравнению с пожилыми здоровыми контрольными лицами [16]. Исследователи предположили, что возрастные изменения постуральной устойчивости - следствие нейродегенеративных процессов и нарушений межнейронных связей структур головного мозга. Степень функциональных нарушений лишь частично связана с выраженностью и локализацией сосудистых изменений по данным компьютерной и магнитно-резонансной томографии, в большей степени она коррелирует со степенью церебральной атрофии.

Атрофия серого вещества при сосудистом повреждении головного мозга, вероятно, возникает вследствие грубых нарушений метаболизма в отсутствие достаточного кровотока [29]. Гиперинтенсивность белого вещества уменьшает общий мозговой кровоток до 20% и влияет на метаболизм глюкозы, что и способствует развитию атрофии [30, 31]. Серое вещество помогает поддерживать осанку [3], а также осуществляет когнитивные функции. И хотя прямых взаимосвязей между общей атрофией серого вещества и когнитивными нарушениями не установлено, трудности баланса и походки можно частично объяснить снижением когнитивных функций (как часть двигательно-когнитивной взаимозависимости).

Чаще атрофия серого вещества развивается как результат течения нейродегенеративного процесса. По данным исследований, медленная походка у пожилых связана с меньшим общим объемом мозга, объемом серого вещества мозжечка, а также объемом гиппокампа. Атрофия гиппокампа ассоциирована со снижением скорости ходьбы [32]. В исследовании меньший объем правого гиппокампа у 175 взрослых (средний возраст – 73 года) был единственной областью мозга, связанной как с замедленной походкой, так и с когнитивными нарушениями [27]. Согласно данным позитронно-эмиссионной томографии с выявлением амилоида, отложение бета-амилоида (Аβ) в задней и передней

части скорлупы, затылочной коре, предклинье и передней поясной извилине сопровождается снижением скорости ходьбы. Снижение работоспособности нижних конечностей в данной ситуации, вероятно, объясняется тем, что нагрузка Аβ локализуется в областях головного мозга, важных для планирования движений, таких как скорлупа, дорсолатеральная префронтальная кора, латеральная височная доля и предклинье [33, 34]. Частым нейродегенеративным заболеванием, сопровождающимся замедлением ходьбы и снижением когнитивных функций, может быть болезнь Альцгеймера.

Синдром моторного когнитивного риска как дебют нейродегенеративного заболевания

В 2013 г. J. Verghese и его коллеги предложили термин «синдром моторного когнитивного риска» как синдром преддеменции [35], который может представлять преморбидную стадию любой деменции, в том числе болезни Альцгеймера [22]. Скорость ходьбы может снизиться за 12 лет до начала умеренного когнитивного расстройства, переходной стадии от обычного старения к деменции при болезни Альцгеймера [36].

Синдром моторного когнитивного риска определяется на основании четырех критериев:

- 1) субъективные когнитивные жалобы, выявленные с помощью стандартизированных опросников;
- 2) медленная походка, определяемая как одно стандартное отклонение или более ниже средних значений походки, соответствующих возрасту и полу;
- 3) способность передвигаться;
- 4) отсутствие деменции [37].

Субъективные когнитивные жалобы на память обычно фиксировались с помощью стандартизированного опросника о потере памяти – 15-пунктовой шкалы гериатрической депрессии (GDS) (J. Yesavage и соавт., 1983) при ответе «да» на вопрос: «Думаете ли вы, что у вас больше проблем с памятью, чем у большинства?» [38].

В 2002 г. J. Verghese и его коллеги показали, что нарушения походки у взрослых в возрасте ≥ 75 лет предсказывают деменцию [39]. Согласно метаанализу пяти исследований с участием 13 130 пожилых людей, медленная скорость ходьбы предшествует деменции [40]. Другой метаанализ 13 исследований с участием 23 512 пожилых людей также подтвердил, что, в частности, медленная ходьба и клинические нарушения при ходьбе – предикторы любой деменции [41]. При этом риск снижения когнитивных функций или деменции при синдроме моторного когнитивного риска выше, чем изолированно при медленной ходьбе или субъективных когнитивных жалобах на память [42]. На основании результатов проведенных работ установлено, что распространенность синдрома моторного когнитивного риска среди 26 802 взрослых без деменции и инвалидности в возрасте ≥ 60 лет из 17 стран составляет 9,7%. Общий уровень заболеваемости с поправкой на возраст и пол, основанный на четырех когортах в США, включавших 3128 пациентов

в возрасте ≥ 60 лет, составил 65,2/1000 человеколет [38]. С возрастом распространенность и заболеваемость синдромом моторного когнитивного риска возрастают до 8,9% среди пациентов в возрасте 60–74 лет и до 10,6% среди пациентов в возрасте ≥ 75 лет [38]. Это согласуется с данными в отношении нейродегенеративных заболеваний, в том числе болезни Альцгеймера, у пациентов пожилого возраста.

Синдром моторного когнитивного риска не только негативно влияет на ходьбу, но и увеличивает риск падений. Согласно результатам продольных исследований с участием 6204 пациентов в возрасте ≥ 60 лет без деменции, синдром моторного когнитивного риска повышает риск падений в большей степени, чем его отдельные компоненты [43]. В исследовании с участием 4235 взрослых (средний возраст – 72 года) синдром моторного когнитивного риска рассматривался как прогностический фактор повышенного риска инвалидности, определяемый как подтвержденная потребность в страховании на случай длительного ухода. У 11 867 пациентов в возрасте ≥ 65 лет без деменции в трех известных когортных исследованиях синдром моторного когнитивного риска служил предиктором смертности в течение медианного периода наблюдения 28 месяцев [44].

Медленная ходьба и субъективные жалобы на память имеют несколько общих факторов риска: изменения уровня кортизола, низкий уровень витаминов D и K, сердечно-сосудистые заболевания и сахарный диабет [45]. Однако, по данным нейровизуализации, у пациентов с синдромом моторного когнитивного риска прямой взаимосвязи с сосудистым поражением мозга не выявлено. Нейровизуализация, выполненная 28 взрослым пациентам с синдромом моторного когнитивного риска и 143 взрослым группы контроля, показала, что участники с синдромом моторного когнитивного риска имеют меньшие объемы общего серого вещества, общего серого вещества коры, премоторной коры, префронтальной коры и дорсолатерального сегмента префронтальной коры [41]. В исследовании с участием 358 взрослых не установлено связи между гиперинтенсивностью белого вещества и синдромом моторного когнитивного риска [46]. При этом имеются отдельные публикации, например исследование с участием 139 пожилых людей, в которых синдром моторного когнитивного риска был связан с лобными лакунарными инфарктами [47], что не позволяет исключить течение цереброваскулярной патологии.

Воксельная морфометрия серого вещества головного мозга, выполненная 267 пациентам (средний возраст – 75,6 года) из трех различных когортных исследований, показала связь объема серого вещества с синдромом моторного когнитивного риска. Это позволяет предположить, что синдром моторного когнитивного риска связан с атрофией серого вещества в областях мозга, отвечающих за функцию контроля, а не за моторные аспекты ходьбы [48]. Систематический обзор показал, что синдром моторного когнитивного риска ассоциирован с меньшим объемом

серого вещества, главным образом в префронтальной коре. Исходя из этого, можно предположить, что патология головного мозга, лежащая в основе данного синдрома, заключается в нейродегенеративных изменениях и нейромедиаторном дефиците [42].

Медикаментозная терапия нарушения равновесия и ходьбы

Несомненная связь постуральной устойчивости и ходьбы с когнитивными нарушениями предполагает возможность использования для коррекции данных нарушений препаратов, улучшающих обе эти функции. Общим нейромедиатором в данной ситуации выступает ацетилхолин, который активен в центрах, отвечающих за движение, например в педункулопонтинном ядре, а также в других ядрах ствола головного мозга, ответственных за выполнение движения. В то же время холинергическая система, особенно базальное крупноклеточное ядро переднего мозга – ядро Мейнерта, играет важнейшую роль в обеспечении различных форм внимания, в том числе ответственных за исполнительный контроль поддержания равновесия и ходьбы [49]. В отдельных работах показана эффективность холинергической терапии противодементными препаратами в снижении риска падений. И хотя данные не подтверждены в больших рандомизированных исследованиях, открывается перспектива использования данного направления для коррекции постуральной неустойчивости. Однако на практике назначение противодементного препарата возможно только при наличии деменции. Альтернативным вариантом, который можно использовать независимо от тяжести когнитивных расстройств, является применение донаторов холина, например холина альфосцерата.

Холина альфосцерат доставляется в мозг через гематоэнцефалический барьер, что приводит к увеличению синтеза и секреции ацетилхолина, а следовательно, к усилению метаболических процессов и активации структур ретикулярной формации головного мозга [50]. Клинические испытания, включая двойные слепые рандомизированные плацебоконтролируемые исследования, продемонстрировали эффективность холина альфосцерата в улучшении памяти и внимания у пациентов со сниженными когнитивными функциями (болезнь Альцгеймера, сосудистая деменция и цереброваскулярные заболевания), что вторично может улучшать корковоподкорковый контроль функции ходьбы [51]. Фармакодинамические исследования подтвердили, что холина альфосцерат действует на синаптическую, в том числе холинергическую, передачу нервного импульса (нейротрансмиссию), пластичность нейронной мембраны и функцию рецепторов, что особенно важно для функционирования холинергических связей, обеспечивающих поддержание равновесия и ходьбы [51].

Результаты отечественного клинического исследования Е.В. Костенко и соавт., выполненного на базе городской больницы, подтверждают эффективность

холина альфосцерата (Церепро) у пациентов с сосудистыми когнитивными нарушениями. По завершении двухмесячной терапии препаратом Церепро у 30 пациентов отмечалось достоверное улучшение нейропсихологического статуса, а также положительная динамика в неврологической и общесоматической сферах [52].

У пациентов, перенесших инсульт, помимо нейромедиаторного дефицита имеются острые повреждения самих нейронов. В данной ситуации целесообразно использовать препараты комбинированного действия, которое наравне с холинергическим эффектом направлено на стабилизацию и поддержание нейронов в очаге повреждения. Цитиколин (Нейпилепт) является предшественником ключевых ультраструктурных компонентов клеточной мембраны (преимущественно фосфолипидов), характеризуется широким спектром действия: способствует восстановлению поврежденных мембран клеток, ингибирует действие фосфолипаз, препятствуя избыточному образованию свободных радикалов, а также предотвращает гибель клеток, влияя на механизмы апоптоза. В остром периоде инсульта прием цитиколина уменьшает объем поврежденной ткани, улучшает холинергическую передачу [53]. Кроме того, более высокие концентрации плазменного фосфатидилхолина - конечного результата метаболизма цитиколина - имеют благоприятный профиль кардиометаболического риска и снижают риск поражения крупных сосудов головного мозга [54]. Эффективность цитиколина (Нейпилепта) подтверждена также у пациентов без острого повреждения мозга. Так, в работе Т.В. Шутеевой (2018) показана высокая эффективность препарата у пациентов с проявлениями

астении и другими аффективными нарушениями. Это объясняется механизмами регуляции не только ацетилхолинового, но также бензодиазепинового и гАМКергического рецепторного комплекса [55]. Комбинированная терапия, включающая холина альфосцерат (Церетон) и цитиколин (Нейпилепт), оказывает синергичный эффект, усиливая нейропластичность и улучшая восстановление двигательных функций после ишемического инсульта [56].

Общим условием ведения больных с постуральными нарушениями является отмена любых препаратов, заведомо ухудшающих когнитивные функции (бензодиазепинов, антихолинергических препаратов), а также избегание приема трициклических антидепрессантов с холинолитическим действием. У пациентов могут быть разные причины постуральной нестабильности и разные ресурсы для лечения, поэтому лечение должно быть персонализированным с учетом индивидуальных факторов. Пациентов следует обучать методам безопасности (наличие поручней, поддержка при ходьбе, в том числе с использованием инвалидной коляски) и основам менее травматичного падения [57].

В перспективе исследования, направленные на поиск терапевтических методов лечения постуральных нарушений, скорее всего, будут включать мультимодальные методы с использованием двигательных и когнитивных механизмов развития подобных нарушений.

Финансирование. Авторы заявляют об отсутствии источника финансирования или иной поддержки. Конфликт интересов. Авторы заявляют

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

- 1. Скрипкина Н.А., Левин О.С. Нарушения ходьбы при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2015; 115 (6–2): 54–60.
- Jacobs J.V., Horak F.B. Cortical control of postural responses. J. Neural. Transm. (Vienna). 2007; 114 (10): 1339– 1348.
- 3. Chang C.J., Yang T.F., Yang S.W., Chern J.S. Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented reality. Front. Aging Neurosci. 2016; 8: 80.
- 4. Левин О.С., Замерград М.В., Артемьев Д.В. и др. Неврология вертикали. Современная терапия в психиатрии и неврологии. 2021; 1–2: 36–42.
- 5. Varghese J.P., Beyer K.B., Williams L., et al. Standing still: is there a role for the cortex? Neurosci. Lett. 2015; 590: 18–23.
- 6. Tossavainen T., Juhola M., Pyykkö I., et al. Development of virtual reality stimuli for force platform posturography. Int. J. Med. Inform. 2003; 70 (2–3): 277–283.
- 7. Hülsdünker T., Mierau A., Neeb C., et al. Cortical processes associated with continuous balance control as revealed by EEG spectral power. Neurosci. Lett. 2015; 592: 1–5.
- 8. Sipp A.R., Gwin J.T., Makeig S., Ferris D.P. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. J. Neurophysiol. 2013; 110 (9): 2050–2060.
- 9. Jacobs J.V., Wu G., Kelly K.M. Evidence for beta corticomuscular coherence during human standing balance: effects of stance width, vision, and support surface. Neuroscience. 2015; 298: 1–11.
- 10. Slobounov S.M., Teel E., Newell K.M. Modulation of cortical activity in response to visually induced postural perturbation: combined VR and EEG study. Neurosci. Lett. 2013; 547: 6–9.
- 11. Tse Y.Y., Petrofsky J.S., Berk L., et al. Postural sway and rhythmic electroencephalography analysis of cortical activation during eight balance training tasks. Med. Sci. Monit. 2013; 19: 175–186.

- 12. Karim H., Fuhrman S.I., Sparto P., et al. Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy. Neuroimage. 2013; 74: 318–325.
- 13. Sullivan E.V., Zahr N.M., Sassoon S.A., et al. Postural instability in HIV infection: relation to central and peripheral nervous system markers. AIDS. 2023; 37 (7): 1085–1096.
- 14. Taube W., Mouthon M., Leukel C., et al. Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex. 2015; 64: 102–114.
- 15. Mitchell W.K., Williams J., Atherton P., et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012; 3: 260.
- 16. Halmi Z., Stone T.W., Dinya E., Málly J. Postural instability years after stroke. J. Stroke Cerebrovasc. Dis. 2020; 29 (9): 105038.
- 17. Султанова С.Г., Федорова Н.В., Бриль Е.В. и др. Нарушения ходьбы и постуральная неустойчивость при болезни Паркинсона на фоне хронической стимуляции подкорковых структур. Журнал неврологии и психиатрии им. С.С. Корсакова. 2019; 119 (9): 123–130.
- 18. Bolton D.A. The role of the cerebral cortex in postural responses to externally induced perturbations. Neurosci. Biobehav. Rev. 2015; 57: 142–155.
- 19. Tsai Y.C., Hsieh L.F., Yang S. Age-related changes in posture response under a continuous and unexpected perturbation. J. Biomech. 2014; 47 (2): 482–490.
- 20. Welter M.L., Do M.C., Chastan N., et al. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait Posture. 2007; 26 (3): 393–399.
- 21. Peel N.M., Alapatt L.J., Jones L.V., Hubbard R.E. The association between gait speed and cognitive status in community-dwelling older people: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2019; 74 (6): 943–948.
- 22. Semba R.D., Tian Q., Carlson M.C., et al. Motoric cognitive risk syndrome: integration of two early harbingers of dementia in older adults. Ageing Res. Rev. 2020; 58: 101022.
- 23. Rahimpour S., Gaztanaga W., Yadav A.P., et al. Freezing of gait in Parkinson's disease: invasive and noninvasive neuromodulation. Neuromodulation. 2021; 24 (5): 829–842.
- 24. Chu W.T., Wang W.E., Zaborszky L., et al. Association of cognitive impairment with free water in the nucleus basalis of Meynert and locus coeruleus to transentorhinal cortex tract. Neurology. 2022; 98 (7): e700–e710.
- 25. Левин О.С. Дисциркуляторная энцефалопатия: анахронизм или клиническая реальность? Современная терапия в психиатрии и неврологии. 2012; 3: 40–46.
- 26. De Laat K.F., van Norden A.G., Gons R.A., et al. Gait in elderly with cerebral small vessel disease. Stroke. 2010; 41 (8): 1652–1658.
- 27. Baezner H., Blahak C., Poggesi A., et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology. 2008; 70 (12): 935–942.
- 28. Васенина Е.Е., Левин О.С., Сонин А.Г. Современные тенденции в эпидемиологии деменции и ведении пациентов с когнитивными нарушениями. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017; 117 (6–2): 87–95.
- 29. Kuczynski B., Targan E., Madison C., et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement. 2010; 6 (1): 54–62.
- 30. Jagust W.J., Zheng L., Harvey D.J., et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann. Neurol. 2008; 63 (1): 72–80.
- 31. Palakurthi B., Burugupally S.P. Postural instability in Parkinson's disease: a review. Brain Sci. 2019; 9 (9): 239.
- 32. Callisaya M.L., Beare R., Phan T.G., et al. Brain structural change and gait decline: a longitudinal population-based study. J. Am. Geriatr. Soc. 2013; 61 (7): 1074–1079.
- 33. Del Campo N., Payoux P., Djilali A., et al. Relationship of regional brain β-amyloid to gait speed. Neurology. 2016; 86 (1): 36–43.
- 34. Tian Q., Resnick S.M., Bilgel M., et al. β -amyloid burden predicts lower extremity performance decline in cognitively unimpaired older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2017; 72 (5): 716–723.
- 35. Verghese J., Holtzer R., Wang C., et al. Role of APOE genotype in gait decline and disability in aging. J. Gerontol. A Biol. Sci. Med. Sci. 2013; 68 (11): 1395–1401.
- 36. Buracchio T., Dodge H.H., Howieson D., et al. The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 2010; 67 (8): 980–986.
- 37. Ayers E., Verghese J. Diagnosing motoric cognitive risk syndrome to predict progression to dementia. Neurodegener. Dis. Manag. 2014; 4 (5): 339–342.
- 38. Verghese J., Annweiler C., Ayers E., et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014; 83 (8): 718–726.
- 39. Verghese J., Lipton R.B., Hall C.B., et al. Abnormality of gait as a predictor of non-Alzheimer's dementia. N. Engl. J. Med. 2002; 347 (22): 1761–1768.
- 40. Kueper J.K., Speechley M., Lingum N.R., Montero-Odasso M. Motor function and incident dementia: a systematic review and meta-analysis. Age Ageing. 2017; 46 (5): 729–738.

- 41. Beauchet O., Allali G., Annweiler C., Verghese J. Association of motoric cognitive risk syndrome with brain volumes: results from the GAIT study. J. Gerontol. A Biol. Sci. Med. Sci. 2016; 71 (8): 1081–1088.
- 42. Sekhon H., Allali G., Launay C.P., et al. Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: systematic review and meta-analysis. Maturitas. 2019; 123: 45–54.
- 43. Callisaya M.L., Ayers E., Barzilai N., et al. Motoric cognitive risk syndrome and falls risk: a multi-center study. J. Alzheimers Dis. 2016; 53 (3): 1043–1052.
- 44. Ayers E., Verghese J. Motoric cognitive risk syndrome and risk of mortality in older adults. Alzheimers Dement. 2016; 12 (5): 556–564.
- 45. Chhetri J.K., Chan P., Vellas B., Cesari M. Motoric cognitive risk syndrome: predictor of dementia and age-related negative outcomes. Front. Med. (Lausanne). 2017; 4: 166.
- 46. Mergeche J.L., Verghese J., Allali G., et al. White matter hyperintensities in older adults and motoric cognitive risk syndrome. J. Neuroimaging Psychiatry Neurol. 2016; 1 (2): 73–78.
- 47. Wang N., Allali G., Kesavadas C., et al. Cerebral small vessel disease and motoric cognitive risk syndrome: results from the Kerala-Einstein study. J. Alzheimers Dis. 2016; 50 (3): 699–707.
- 48. Blumen H.M., Allali G., Beauchet O., et al. A gray matter volume covariance network associated with the motoric cognitive risk syndrome: a multicohort MRI study. J. Gerontol. A Biol. Sci. Med. Sci. 2019; 74 (6): 884–889.
- 49. Callisaya M.L., Blizzard C.L., Wood A.G., et al. Longitudinal relationships between cognitive decline and gait slowing: the Tasmanian study of cognition and gait. J. Gerontol. A Biol. Sci. Med. Sci. 2015; 70 (10): 1226–1232.
- 50. Lee W., Kim M. Comparative study of choline alfoscerate as a combination therapy with donepezil: a mixed double-blind randomized controlled and open-label observation trial. Medicine (Baltimore). 2024; 103 (24): e38067.
- 51. De Jesus Moreno Moreno M. Cognitive improvement in mild to moderate Alzheimer's dementia after treatment with the acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin. Ther. 2003; 25 (1): 178–193.
- 52. Костенко Е.В., Петрова Л.В., Артемова И.Ю. и др. Опыт применения препарата Церепро (холина альфосцерат) при лечении амбулаторных больных с хроническими прогрессирующими сосудистыми заболеваниями головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012; 3: 24–30.
- 53. Agarwal A., Vishnu V.Y., Sharma J., et al. Citicoline in acute ischemic stroke: a randomized controlled trial. PLoS One. 2022; 17 (5): e0269224.
- 54. Roe A.J., Zhang S., Bhadelia R.A., et al. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults. Am. J. Clin. Nutr. 2017; 105 (6): 1283–1290.
- 55. Шутеева Т.В. Применение нейпилепта для коррекции проявлений астенического синдрома. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118 (2): 81–84.
- 56. Шишкова В.Н. Современные возможности нейрореабилитации: перспективы медикаментозной поддержки в разные периоды восстановления. Нервные болезни. 2020; 2: 75–78.
- 57. Cordovilla-Guardia S., Molina T.B., Franco-Antonio C., et al. Association of benzodiazepines, opioids and tricyclic antidepressants use and falls in trauma patients: conditional effect of age. PLoS One. 2020; 15 (1): e0227696.

'Cognitive' Disorders of Balance and Walking

O.A. Gankina, PhD, E.E. Vasenina, PhD, Prof., O.S. Levin, PhD, Prof.

Russian Medical Academy of Continuous Professional Education

Contact person: Elena E. Vasenina, hel_vas@mail.ru

Imbalance worsens a person's standard of living, makes it difficult for him to self-serve and often requires constant outside help. At the moment, there is no reliable therapy to improve resistance, since the causes of postural disorders may be different. Cognitive control of walking is an important stage of walking and often suffers from the development of cognitive impairment. The most common combination of cognitive and postural disorders occurs in patients with dyscirculatory encephalopathy, is observed in stroke, but may also occur in neurodegenerative pathology, such as Alzheimer's disease. At the same time, not only cognitive impairment can lead to impaired walking, slow walking itself can be a predictor of cognitive impairment. In 2013, the concept of motor cognitive risk syndrome was introduced, which, based on subjective complaints about memory, the absence of dementia combined with the ability to move, but slow walking, predicts the risk of developing dementia to a greater extent than each individual symptom individually. General neurotransmitter cholinergic deficiency, which leads to both movement disorders and cognitive disorders, can be considered as a potential target for improving these functions through the use of cholinergic therapy.

Keywords: postural instability, cognitive impairment, dyscirculatory encephalopathy, stroke, motor cognitive risk syndrome, acetylcholine

когнитив включает (on (

- УВЕЛИЧИВАЕТ НЕЙРОТРАНСМИССИЮ²⁻⁴
- УСИЛИВАЕТ НЕЙРОПЛАСТИЧНОСТЬ²⁻⁴
- УЛУЧШАЕТ ФУНКЦИЮ НЕЙРОРЕЦЕПТОРОВ²⁻⁴
- ДЛЯ ВЗРОСЛЫХ И ДЕТЕЙ С 6 ЛЕТ²⁻⁴

НОВЫЕ УНИКАЛЬНЫЕ¹ ФОРМЫ – УДОБНОЕ РЕШЕНИЕ ДЛЯ ДЛИТЕЛЬНЫХ КУРСОВ ТЕРАПИИ²⁻⁴

1. URL: https://grls.rosminzdrav.ru/ 2. Инструкция по медицинскому применению Церетон® раствор для приёма внутрь, ЛП-№(004491)-[PГ-RU] от 02.02.2024. 3. Листок-вкладыш – информация для пациентов Церетон® капсулы, ЛП-№(005256)-[PГ-RU]

ЗАО «ФармФирма «Сотекс» Юридический адрес: 141345, Московская обл., г. Сергиев Посад, п. Беликово, д. 11 Почтовый адрес: 115201, Москва, Каширское шоссе, д. 22, корп. 4, стр. 7 Тел.: +7 (495) 956-29-30;Электронная почта: info@sotex.ru

Претензии потребителей направлять по адресу: электронная почта: pharmacovigilance@sotex.ru

Информация для медицинских и фармацевтических работников.

