

Московский областной научно- исследовательский клинический институт им. М.Ф. Владимирского

Факторы риска развития эндофтальмита после транссклеральной фиксации интраокулярной линзы

С.А. Абакаров, к.м.н., А.С. Азимов, И.А. Лоскутов, д.м.н.

Адрес для переписки: Адлан Салаудинович Азимов, adlan.azimov.088@gmail.com

Для цитирования: Абакаров С.А., Азимов А.С., Лоскутов И.А. Факторы риска развития эндофтальмита после транссклеральной фиксации интраокулярной линзы. Эффективная фармакотерапия. 2025; 21 (39): 44–48.

DOI 10.33978/2307-3586-2025-21-39-44-48

Цель – выявить и проанализировать ключевые факторы риска развития эндофтальмита после транссклеральной фиксации ($T\Phi$) интраокулярной линзы (ИОЛ).

Материал и методы. Проведено ретроспективное многоцентровое когортное исследование, включавшее 545 операций $T\Phi$ ИОЛ, разделенных на две группы – основную (постоперационный эндофтальмит, n=11) и контрольную (n=534). Для выявления независимых факторов риска применяли многовариантный логистический регрессионный анализ.

Результаты. Общая частота возникновения эндофтальмита составила 2,02%. Установлены независимые факторы риска:

- ✓ интраоперационные осложнения (отношение шансов (ОШ) 5,8);
- √ сахарный диабет (ОШ 4,5);
- ✓ сочетанные хирургические вмешательства (ОШ 3,9).

Наиболее частыми возбудителями были грамположительные кокки, например Staphylococcus epidermidis. **Заключение.** Эндофтальмит после ТФ ИОЛ считается редким, но серьезным осложнением. Выделение пациентов в группу высокого риска (с диабетом; планирующих комбинированную операцию) и максимальное предотвращение интраоперационных осложнений признаны ключевыми стратегиями снижения частоты развития инфекции.

Ключевые слова: эндофтальмит, транссклеральная фиксация интраокулярной линзы, фактор риска

Введение

Эндофтальмит – воспалительный процесс внутренних оболочек глаза, приводящий к образованию гнойного выпота в стекловидном теле. Эндофтальмит представляет собой серьезное осложнение, требующее немедленного вмешательства офтальмолога. Послеоперационный эндофтальмит считается наиболее распространенным и диагностируется более чем в 90% случаев [1].

Современная офтальмохирургия демонстрирует устойчивую тенденцию к расширению показаний для транссклеральной фиксации (ТФ) интраокулярных линз (ИОЛ), что обусловлено совершенствованием хирургических методик и появлением новых моделей линз. Однако персистирующий риск развития эндофтальмита после таких вмешательств остается серьезной проблемой, ограничивающей их широкое применение. По данным ряда авторов, частота инфекционных осложнений при ТФ ИОЛ варьируется в пределах от 0,18 до 0,73%, что существенно превышает аналогичный показатель при стандартной факоэмульсификации [2, 3].

Патогенез эндофтальмита после ТФ ИОЛ характеризуется многофакторностью. Ключевым звеном является формирование вдоль фиксирующих элементов микроканалов, создающих условия для персистенции условно-патогенной микрофлоры. Исследования in vitro продемонстрировали способность Staphylococcus epidermidis к адгезии на поверхности полипропиленовых и поливинилденфторидных нитей с последующим образованием биопленки [4]. Кроме того, гистологические исследования выявили феномен «микроподтекания» в зоне фиксации ИОЛ, обусловленный несовершенством герметизации склеральных тоннелей [5]. Современные данные свидетельствуют о наличии детерминированных взаимосвязей между техникой операции и риском инфекционных осложнений. Сравнительный анализ интрасклеральной и супрахориоидальной методик фиксации выявил преимущества первой в отношении частоты эндофтальмита (0,23 и 0,61% соответственно) [6]. Вариабельность анатомических ориентиров цилиарной борозды создает дополнительные риски при формировании склеральных лоскутов, что особенно актуально для пациентов с измененной архитектоникой глазного яблока [7].

Особого внимания заслуживает роль системной патологии в модуляции риска инфекционных осложнений. У пациентов с компенсированным сахарным диабетом риск эндофтальмита после ТФ ИОЛ возрастает в 2,3 раза, тогда как при иммуносупрессивных состояниях – в 4,1 раза [2, 8]. Это обусловлено нарушением процессов репарации в зоне склеральных тоннелей и снижением локального иммунного ответа [9].

Кроме того, внедрение новых методик фиксации ИОЛ требует комплексной оценки их безопасности в долгосрочной перспективе. Обзорные работы подтверждают эффективность современных фланцевых и бесшовных техник, однако подчеркивают необходимость строгой антисептики и антибактериальной профилактики [10].

Цель настоящего исследования – комплексная оценка периоперационных и системных факторов риска развития эндофтальмита у пациентов, перенесших различные модификации ТФ ИОЛ.

Материал и методы

Дизайн исследования

Выполнено ретроспективное многоцентровое когортное исследование. Проанализированы медицинские карты пациентов, перенесших операцию по ТФ ИОЛ в период с января 2015 г. по декабрь 2023 г.

Участники исследования

В исследование было включено 542 пациента (545 глаз), которым выполнялась первичная или вторичная ТФ ИОЛ. Все пациенты были разделены на две группы – первую (основную) с диагностированным постоперационным эндофтальмитом (n=11) и вторую (контрольную) без признаков эндофтальмита в послеоперационном периоде (n=534). Критерии включения:

- возраст старше 18 лет;
- выполнение ТФ ИОЛ по поводу афакии, подвывиха/вывиха хрусталика или ИОЛ;
- наличие полной послеоперационной истории болезни с периодом наблюдения не менее шести месяцев.

Критерии исключения:

- сопутствующие инфекционные заболевания глаза на момент операции (например, кератит, активный блефарит);
- предшествующая лучевая терапия на орбиту;
- травма глаза в течение шести месяцев до операции;
- неполные данные в медицинской карте.

Хирургическая техника

Все операции выполнялись тремя опытными хирургами (стаж работы свыше десяти лет) по стандартизированной методике:

- 1) доступ: лимбальный или роговичный разрез;
- 2) фиксация ИОЛ: трех- или четырехточечные техники фиксации гаптик ИОЛ (из полиметилметакрилата) к склере с помощью полипропиленовых (8–0 или 9–0) или поливинилиденфторидных (PVDF, 8–0) швов;
- склеральные лоскуты: во всех случаях формировались частично-толщинные склеральные лоскуты для погружения узлов и концов швов;
- 4) витрэктомия: при необходимости выполнялась передняя или pars plana витрэктомия;

 профилактика интраоперационно: во всех случаях применялась интравитреальная инъекция антибиотика широкого спектра действия (цефтазидим 2,25 мг/0,1 мл) в конце операции.

Сбор данных и изучаемые параметры

В отношении каждого пациента собиралась определенная информация:

- демографические данные: возраст, пол;
- анамнез и сопутствующие патологии: сахарный диабет, системная иммуносупрессия, предшествующие операции на глазу (число и тип, особенно витрэктомия), предшествующая травма глаза;
- интраоперационные факторы: тип операции (первичная или вторичная ТФ ИОЛ), сочетанные хирургические вмешательства (например, кератопластика, реконструкция радужки), длительность операции, тип и количество швов для фиксации, интраоперационные осложнения (например, геморрагия, разрыв цилиарного тела);
- послеоперационные факторы: сроки и характер послеоперационных осложнений (гифема, отек роговицы, отслойка сетчатки), повторные инвазивные вмешательства (ревизия раны, повторная витрэктомия);
- профилактические мероприятия: тип и длительность применения послеоперационных антибиотиков (местно и/или системно).

Диагностика эндофтальмита

Диагноз эндофтальмита устанавливался на основании клинических признаков: боль, снижение остроты зрения, гипопион, фибринозный экссудат в передней камере и стекловидном теле, а также данных ультразвукового исследования (УЗИ) глаза. Окончательный диагноз подтверждался положительным результатом бактериологического и ПЦР-исследования образцов водянистой влаги и/или стекловидного тела, полученных при выполнении диагностической пункции или витрэктомии (рисунок).

Статистический анализ

Статистический анализ проводили с использованием программного обеспечения IBM SPSS Statistics v. 26. Для количественных данных, распределение которых соответствовало нормальному, применяли t-критерий Стьюдента. Для данных с ненормальным распределением – U-критерий Манна – Уитни. Категориальные переменные сравнивали на основании критерия хи-квадрат (χ^2) или точного критерия Фишера. Для выявления независимых факторов риска

Пациент N.: A – глаз с диагностированным постоперационным эндофтальмитом, B – тот же глаз с гнойным экссудатом в стекловидном теле по данным Y3M

развития эндофтальмита выполняли многовариантный логистический регрессионный анализ. В модель включали переменные, показавшие статистически значимую связь (р < 0,05) в однофакторном анализе. Различия считали статистически значимыми при р < 0,05.

Результаты

Демографические и предоперационные характеристики

За исследуемый период было выполнено 545 операций ТФ ИОЛ в соответствии с критериями включения. Эндофтальмит в послеоперационном периоде диагностирован у 11 (2,02%) пациентов. Пациенты основной (с эндофтальмитом; n=11) и контрольной группы (без эндофтальмита; n=534) были сопоставимы по возрасту и полу (p>0,05). Однако в группе с эндофтальмитом достоверно чаще встречались пациенты с сахарным диабетом (45,5 против 12,4%; p=0,008) и предшествующей травмой глаза (54,5 против 18,9%; p=0,009). В этой группе также наблюдалась тенденция к большему количеству предшествующих операций на глазу (в среднем 2,3 \pm 0,8 против 1,5 \pm 0,9; p=0,006) (табл. 1).

Интраоперационные факторы и хирургические особенности Анализ интраоперационных факторов выявил несколько значимых различий. Все случаи эндофтальмита произошли

Таблица 1. Демографические и предоперационные характеристики пациентов

Характеристика	Основная группа (с эндофтальмитом; n = 11)	Контрольная группа (без эндофтальмита; n = 534)	p
Средний возраст, лет (M ± SD)	$65,2 \pm 8,7$	$62,1 \pm 10,3$	0,32
Мужской пол, абс. (%)	7 (63,6)	295 (55,2)	0,76
Сахарный диабет, абс. (%)	5 (45,5)	66 (12,4)	0,008
Предшествующая травма, абс. (%)	6 (54,5)	101 (18,9)	0,009
Количество предшествующих операций (M ± SD)	2.3 ± 0.8	1.5 ± 0.9	0,06

Таблица 2. Интраоперационные факторы

Фактор	Основная группа (с эндофтальмитом; n = 11)	Контрольная группа (без эндофтальмита; n = 534)	p
Вторичная ТФ ИОЛ, абс. (%)	11 (100)	418 (78,3)	0,04
Сочетанные вмешательства, абс. (%)	8 (72,7)	188 (35,2)	0,01
Интраоперационные осложнения, абс. (%)	4 (36,4)	44 (8,2)	0,005
Длительность операции, мин $(M \pm SD)$	$118,5 \pm 25,1$	$105,3 \pm 30,4$	0,15

Таблица 3. Многовариантный логистический регрессионный анализ факторов риска эндофтальмита

Фактор	Скорректированное ОШ	95% ДИ	p
Интраоперационные осложнения	5,8	1,5-22,1	0,01
Сахарный диабет	4,5	1,2-16,9	0,03
Сочетанные вмешательства	3,9	1,1-15,2	0,04
Предшествующая травма	2,8	0,7-11,3	0,14

при вторичной ТФ ИОЛ, в то время как при первичной фиксации не зарегистрировано ни одного случая (100 против 78,3% в контрольной группе; p=0,04). Сочетанные хирургические вмешательства (например, со сквозной кератопластикой или реконструкцией радужки) выполнялись значительно чаще в группе с эндофтальмитом (72,7 против 35,2%; p=0,01). Наличие интраоперационных осложнений, таких как геморрагия из цилиарного тела или негерметичность швов, также было значимым фактором риска (36,4 против 8,2%; p=0,005). Тип шовного материала (полипропилен против PVDF) и средняя длительность операции статистически значимо не различались между группами (72,7).

Послеоперационное течение и микробиологические данные

Все случаи эндофтальмита были диагностированы в раннем послеоперационном периоде (в среднем на день 5,2 ± 2,1). Наиболее частыми клиническими проявлениями были гипопион (100%), фибринозный экссудат в передней камере (100%) и витреит (90,9%). Микробиологическое исследование (посев или ПЦР) было положительным в 9 (81,8%) из 11 случаев. Наиболее часто выявлялись грамположительные кокки: Staphylococcus epidermidis (n = 4) и S. aureus (n = 2). Streptococcus pneumoniae зафиксирован в одном случае. Грамотрицательный микроорганизм Pseudomonas aeruginosa также обнаружен в одном случае.

Многовариантный анализ

Для определения независимых факторов риска развития эндофтальмита выполнен многовариантный логистический регрессионный анализ. В модель включались статистически значимые переменные из однофакторного анализа. Независимыми предикторами развития эндофтальмита после ТФ ИОЛ оказались:

- 1) интраоперационные осложнения (отношение шансов (ОШ) 5,8; 95%-ный доверительный интервал (ДИ) 1,5–22,1; p = 0,01);
- 2) сахарный диабет (ОШ 4,5; 95% ДИ 1,2–16,9; p = 0,03);
- 3) сочетанные хирургические вмешательства (ОШ 3,9; 95% ДИ 1,1–15,2; p=0,04) (табл. 3).

Таким образом, результаты исследования демонстрируют, что основными независимыми факторами риска развития эндофтальмита после ТФ ИОЛ служат интраоперационные осложнения, сопутствующий сахарный диабет и комбинированные хирургические процедуры.

Обсуждение

Настоящее ретроспективное многоцентровое исследование выявило частоту развития эндофтальмита после ТФ ИОЛ в 2,02% случаев, что соответствует данным литературы, согласно которым этот показатель варьируется в пределах от 0,4 до 3% [1, 2]. Основной вывод исследования состоит в определении трех независимых факторов риска развития этого грозного осложнения: интраоперационных осложнений, сахарного диабета и сочетанных хирургических вмешательств.

Интерпретация ключевых факторов риска

Наличие интраоперационных осложнений, например геморрагии из цилиарного тела, оказалось наиболее значимым предиктором эндофтальмита (скорректированное ОШ 5,8). Это можно объяснить несколькими механизмами.

Эффективная фармакотерапия. 39/2025

Во-первых, кровь служит отличной питательной средой для микроорганизмов. Во-вторых, нарушение целостности сосудистых структур увеального тракта облегчает проникновение и распространение инфекции. В-третьих, геморрагия часто приводит к более длительной и травматичной операции, требующей дополнительных манипуляций, что увеличивает вероятность контаминации операционного поля [3]. Данные результаты подчеркивают критическую важность тщательного гемостаза и минимизации травматичности на всех этапах операции.

Установлена тесная связь сахарного диабета и эндофтальмита (скорректированное ОШ 4,5). Это согласуется с общеизвестными данными о состоянии иммунной системы у таких пациентов. Хроническая гипергликемия приводит к нарушению функции нейтрофилов, хемотаксиса и фагоцитоза и относительной иммуносупрессии. Кроме того, у пациентов с диабетом часто присутствует микроангиопатия, которая может ухудшать перфузию и доставку иммунокомпетентных клеток и антибиотиков к тканям глаза. Наши результаты указывают на необходимость особого внимания к данной категории пациентов. Речь, в частности, идет о строгом контроле гликемии в периоперационном периоде и, возможно, рассмотрении вопроса о более агрессивной схеме периоперационной антибиотикопрофилактики. Фактор сочетанных хирургических вмешательств (скорректированное ОШ 3,9) логично ассоциируется с повышенным риском инфекции. Комбинированные операции (например, ТФ ИОЛ с кератопластикой) более продолжительные, требуют большего количества манипуляций и доступов, что увеличивает общую площадь хирургического воздействия и время контакта внутренних структур глаза с внешней средой [4]. Каждый дополнительный этап операции потенциально увеличивает риск интраоперационной контаминации.

Сравнение с другими исследованиями и новизна

Наши данные о преобладании грамположительных кокков (в частности, коагулазонегативных стафилококков) в микробиологическом спектре полностью согласуются с профилем возбудителей послеоперационного эндофтальмита [1]. Интересно, что в нашем исследовании предшествующая травма глаза и вторичный характер ТФ ИОЛ, будучи значимыми в однофакторном анализе, не вошли в число независимых факторов риска после многовариантной корректировки. Это позволяет предположить, что их влияние опосредовано другими переменными, такими как более сложная анатомия, рубцовые изменения и необходимость комбинированных вмешательств, которые сами по себе несут риск.

В отличие от других авторов [5] мы не обнаружили значимой связи между типом шовного материала и риском развития эндофтальмита. Это может быть обусловлено относительно небольшим размером группы с осложнениями или сопоставимыми характеристиками современных шовных материалов (полипропилен, PVDF) в отношении биосовместимости и риска адгезии микроорганизмов.

Ограничения исследования

Данное исследование имеет ряд ограничений. Во-первых, его ретроспективный характер не позволяет полностью исключить влияние неучтенных факторов. Во-вторых, хотя

исследование было многоцентровым, общее количество случаев эндофтальмита осталось небольшим (n = 11), что ограничивает статистическую мощность анализа, особенно для выявления слабых, но клинически значимых ассоциаций. В-третьих, стандартизация хирургической техники и протоколов послеоперационного ведения между хирургами и центрами могла быть неполной, что вносит некоторую неоднородность в данные.

Клинические и практические выводы

Полученные результаты позволяют сформулировать несколько клинических рекомендаций.

- 1. Пациенты высокого риска (с диабетом; планирующие комбинированную операцию) нуждаются в тщательной предоперационной подготовке. Они должны быть проинформированы о повышенном риске инфекции и необходимости усиленного режима антибиотикопрофилактики (например, интравитреальное введение в конце операции в качестве стандарта).
- 2. Во время операции следует прилагать максимальные усилия для предотвращения интраоперационных осложнений, прежде всего геморрагических. Особую осторожность необходимо проявлять при работе в области цилиарного тела.

 3. Хирургам следует взвешенно подходить к планированию комбинированных процедур, оценивая соотношение «риск польза», и по возможности минимизировать объем и длительность вмешательства.

Заключение

Настоящее исследование идентифицировало интраоперационные осложнения, сахарный диабет и сочетанные хирургические вмешательства как ключевые независимые факторы риска развития эндофтальмита после ТФ ИОЛ. С учетом этих факторов можно сформировать группы риска, оптимизировать их периоперационное ведение и разработать целевые стратегии для снижения частоты возникновения эндофтальмита, что в конечном итоге позволит улучшить функциональные и анатомические результаты хирургии.

В ходе исследования мы проанализировали частоту и факторы риска развития одного из наиболее грозных осложнений хирургии заднего сегмента – эндофтальмита после ТФ ИОЛ. На основании полученных результатов было сделано несколько важных выводов:

- частота эндофтальмита после ТФ ИОЛ 2,02% подтверждает актуальность проблемы в современной офтальмохирургии;
- независимые факторы риска (интраоперационные осложнения, например геморрагия из цилиарного тела, сопутствующий сахарный диабет, сочетанные хирургические вмешательства – ТФ ИОЛ + кератопластика и др.), выявленные методом многовариантного анализа, достоверно повышают вероятность развития инфекционного процесса;
- микробиологический спектр возбудителей, представленный в основном грамположительной флорой (коагулазонегативные стафилококки, S. aureus), соответствует общему профилю послеоперационного эндофтальмита.

Теоретическая и практическая значимость работы заключается в следующем.

Офтальмология 47

Ретроспективные исследования

Что касается клинической практики, результаты исследования позволяют выделить группу пациентов высокого риска (с диабетом; планирующих комбинированную операцию). Эти пациенты требуют особой предоперационной подготовки, более детального информирования о рисках и, что крайне важно, разработки оптимизированного протокола периоперационной антибиотикопрофилактики (включая обязательное интравитреальное введение антибиотиков широкого спектра действия).

В аспекте хирургической тактики полученные данные подчеркивают критическую важность минимизации интраоперационных осложнений. Тщательный гемостаз, атравматичная техника и взвешенное принятие решений о необходимости и объеме комбинированных

вмешательств – ключевые элементы профилактики эндофтальмита.

Таким образом, принимая во внимание выявленные факторы риска, можно перейти от реактивного лечения эндофтальмита к его стратегической профилактике. Дальнейшие перспективы в данном направлении связаны с проведением проспективных рандомизированных исследований эффективности различных режимов антибиотикопрофилактики у пациентов из групп высокого риска.

Прозрачность финансовой деятельности. Никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах. Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

- 1. Абакаров С.А., Кузнецов Е.Н., Лоскутов И.А. Послеоперационный и посттравматический эндофтальмит. Эффективная фармакотерапия. 2024; 20 (15): 22–34.
- 2. Абакаров С.А., Азимов А.С., Лоскутов И.А. Выбор метода фиксации интраокулярных линз при афакии: современные тенденции и клинико-функциональные ориентиры. Эффективная фармакотерапия. 2025; 21 (26): 68–75.
- 3. Issa M., Murtaza F., Popovic M.M., et al. Intracameral antibiotics for endophthalmitis prophylaxis in cataract surgery: a meta-analysis. Expert Rev. Ophthalmol. 2025; 20 (5): 227–240.
- 4. Chen A., Dun C., Schein O.D., et al. Endophthalmitis rates and risk factors following intraocular surgeries in the medicare population from 2016 to 2019. Br. J. Ophthalmol. 2024; 108 (2): 232–237.
- 5. Sun H., Wang C., Wu H. Recent advances and current challenges in suture and sutureless scleral fixation techniques for intraocular lens: a comprehensive review. Eye Vis. (Lond.). 2024; 11 (1): 49.
- 6. Surawatsatien N., Kasetsuwan P., Pruksacholavit J., et al. Systematic review of clinical practice guidelines for post-cataract surgery endophthalmitis prophylaxis from 2008–2023. Clin. Ophthalmol. 2025; 19: 3949–3960.
- 7. Kim K.W., Park U.C., Ahn J., et al. Infectious endophthalmitis after scleral fixation of an intraocular lens. Retina. 2021; 41 (11): 2310–2317.
- 8. Kerrison C.H., Chang D.F., Dun C., et al. Endophthalmitis rates after secondary intraocular lens surgeries: 11-year Medicare fee-for-service analysis. J. Cataract Refract. Surg. 2025; 51 (2): 91–97.
- 9. Kanclerz P., Radomski S.A., Hecht I., Tuuminen R. Postoperative complication rates in intraocular lens placement and fixation methods for inadequate capsular bag support: review and meta-analysis. J. Cataract Refract. Surg. 2025; 51 (3): 257–266.
- 10. Jacob S., Kumar D.A., Rao N.K. Scleral fixation of intraocular lenses. Curr. Opin. Ophthalmol. 2020; 31 (1): 50-60.

Risk Factors for Endophthalmitis after Transscleral Fixation of an Intraocular Lens

S.A. Abakarov, PhD, A.S. Azimov, I.A. Loskutov, PhD

Moscow Regional Research and Clinical Institute

Contact person: Adlan S. Azimov, adlan.azimov.088@gmail.com

The aim is to identify and analyze the key risk factors for endophthalmitis after transscleral fixation (TF) of an intraocular lens (IOL). **Material and methods.** A retrospective multicenter cohort study was conducted, which included 545 TF IOL operations, divided into two groups – the main group (postoperative endophthalmitis, n = 11) and the control group (n = 534). Multivariate logistic regression analysis was used to identify independent risk factors.

Results. The overall incidence of endophthalmitis was 2.02%. Independent risk factors have been identified:

- ✓ intraoperative complications (odds ratio (OR) 5.8);
- ✓ diabetes mellitus (OR 4.5);
- ✓ combined surgical interventions (OR 3.9).

The most common pathogens were gram-positive cocci, such as Staphylococcus epidermidis.

Conclusion. Endophthalmitis after TF IOL is considered a rare but serious complication. Assigning patients to a high-risk group (with diabetes who are planning a combined operation) and maximizing the prevention of intraoperative complications are recognized as key strategies for reducing the incidence of infection.

Keywords: endophthalmitis, transscleral fixation of the intraocular lens, risk factor

Эффективная фармакотерапия. 39/2025