количество статей
6605
Загрузка...

Ученые разработали нейросеть для диагностики зубочелюстных аномалий

Пресс-служба НИТУ «МИСиС» | 15.03.2022 11:00:00

Российские ученые разработали нейросеть, позволяющую быстро и с высокой точностью диагностировать распространенные зубочелюстные аномалии. Отличительно особенностью разработки является ее совместимость практически с любым персональным компьютером. Результаты работы были опубликованы в журнале Proceedings of ITNT 2021 - 7th IEEE International Conference on Information Technology and Nanotechnology

Зубочелюстные аномалии, связанные с неправильным смыканием челюстей и расположением зубов во рту, приводят к эстетическим и функциональным проблемам. Это и асимметрия лица, и благоприятные условия для роста патогенной микрофлоры, и неравномерное распределение жевательной нагрузки, приводящее к истиранию и разрушению здоровых зубов.

До сих пор основным инструментом диагностики таких аномалий остается цефалометрический анализ рентгеновских снимков головы. Этот метод позволяет определять особенности роста и развития костей лица, локализовывать аномальные анатомические структуры, а также получать точные изображения и измерения различных структур и характеристик костей черепа. Однако, цефалометрия – времязатратный и дорогостоящий метод диагностики, при котором анализ снимков выполняется врачом вручную.

Использование современных цифровых инструментов, например искусственного интеллекта, который выполняет цефалометрический анализ в автоматическом режиме и формирует предварительный диагноз с помощью искусственного интеллекта, позволяет сэкономить время врача и существенно снижает вероятность врачебной ошибки.

Ученые из НИТУ «МИСиС», Самарского государственного медицинского университета и ИСОИ РАН разработали программный комплекс на основе искусственного интеллекта, позволяющий быстро и с высокой точностью диагностировать распространенные зубочелюстные аномалии. В основе технологии лежит специальная нейронная сеть, нацеленная на эффективное распознавание графических образов. Разработка позволяет автоматизировать процесс анализа рентгенографических снимков, что экономит время врача и пациента.

«При этом для использования разработанного программного обеспечения не требуется специального оборудования: достаточно наличия персонального компьютера с Windows 7 или новее. Само программное обеспечение системы поддержки принятия решений займет на жестком диске не более 110 МБ памяти, а время анализа снимка в зависимости от мощности процессора компьютера занимает от одной до трех секунд», - отмечает один из авторов разработки Константин Добратулин, студент второго курса обучения магистратуры, Институт информационных технологий и компьютерных наук (ИТКН), кафедра "Магистерская школа Информационных бизнес систем"

Процесс анализа снимка происходит в несколько этапов. Сначала медицинский работник загружает в программное обеспечение телерентгенографический снимок пациента, затем нейронная сеть анализирует снимок. Результаты анализа представляют из себя матричный код. Далее полученные результаты приводятся в понятную для медицинского работника форму — координаты цефалометрических ориентиров на снимке, расстояния и углы наклона между ними, а также отображение в виде графического представления цефалометрических ориентиров на рентгенограмме с возможностью внести корректировки в их расположение лечащим врачом при необходимости.

«Точность постановки диагноза разработанной нейросетью составляет в среднем до 1.5 мм отклонения от эталонных значений положений анатомических ориентиров, локализованных тремя независимыми экспертами-ортодонтами, возможные возникающие погрешности в постановке диагноза могут быть скорректированы в ручном режиме врачом», - поясняет Константин Добратулин

Авторы разработки отмечают, что в дальнейшем созданный ими алгоритм может быть интегрирован в программное обеспечение и системы, которые используются в медицинских учреждениях.

Кроме того, в теории, разработанное программное обеспечение может быть совместимо с отечественным оборудованием и ПО, так как использует библиотеки с открытым исходным кодом и может быть доработано и адаптировано для обеспечения совместимости.


  • КЛЮЧЕВЫЕ СЛОВА: нейросеть, зубочелюстные аномалии