Введение
Исходя из современных представлений о канцерогенезе, одним из основных механизмов злокачественного перерождения клеток считается нарушение молекулярных путей контроля апоптоза [1]. С момента появления данного тезиса было проведено множество исследований, касающихся поиска и анализа маркеров инициирования и блокирования программируемой клеточной смерти. Повышенный интерес ученых к данному направлению закономерен, ведь понимание данных механизмов позволит подобрать мишени для обратимого контроля пролиферативной активности клеток.
В конце XX в. был описан ген белка сурвивина – одного из участников системы внутриклеточной регуляции апоптоза [2]. Известные внутриклеточные взаимодействия этого белка с различными биологически активными молекулами, участие во многих сигнальных путях, а также отсутствие собственной ферментативной активности позволяют говорить о нем как об адаптерном белке. Между тем указанный член семейства белков – ингибиторов апоптоза рассматривается как потенциальный кандидат для терапевтического воздействия при злокачественных новообразованиях различных локализаций.
Биология белка сурвивина
Сурвивин, также известный как BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5, бакуловирусный ингибитор мотива апоптозных повторов 5), – низкомолекулярный цинк-содержащий металлопротеин, состоящий из 142 аминокислотных остатков (молекулярная масса 16,5 кДа). Протеин относится к семейству IAP (inhibitors of apoptosis protein, ингибиторы апоптоза), которые связываются с различными каспазами с образованием неактивных комплексов и блокируют апоптоз.
В растворе сурвивин может существовать в гомодимерной форме, образуя уникальную структуру в форме галстука-бабочки [3]. При этом протяженные альфа-спиральные С-концы мономеров остаются свободными и открыты для взаимодействия с другими белками. Показано, что димерная и мономерная формы сурвивина характеризуются разным антиапоптотическим эффектом [4].
Сурвивин экспрессируется во время роста и пролиферации клеток [5, 6]. Белок кодируется геном BIRC5, расположенным в длинном плече 17-й хромосомы, и состоит из трех интронов и четырех экзонов [1]. Альтернативный сплайсинг обеспечивает формирование четырех различных изоформ белка [7]. Минимум экспрессии наблюдается в пресинтетической фазе клеточного цикла, максимум – на этапе митоза [8].
В интерфазе сурвивин локализуется в цитоплазме и ядре клетки. Несмотря на небольшие размеры молекулы, позволяющие ему диффундировать через ядерную мембрану, до настоящего времени достоверных данных, описывающих перенос протеина из цитоплазмы, не получено [9]. В то же время перенос его из ядра в цитоплазму показан при исследовании взаимодействий с HSP90 [10]. В трансформированных клетках сурвивин обнаруживается в митохондриальном матриксе [11]. Этот пул молекул способен транспортироваться в цитоплазму под воздействием проапоптотических сигналов. Такой сурвивин обладает повышенной антиапоптотической активностью (причина пока неизвестна) [12]. В процессе пролиферации сурвивин подвергается модификациям, которые координируют его в центромерных участках хромосом в мета- и анафазе митоза [13]. Белок обнаружен на поверхности экзосом, которые секретируются раковыми клетками на фоне проводимой химиотерапии.
В ходе эксперимента, проведенного в трансформированной культуре клеток, показано, что переданный таким способом сурвивин способен проявить антиапоптотический эффект в соседних клетках, что также подтверждает его роль в межклеточной коммуникации [14].
Внутриклеточная роль белка сурвивина
Основной функцией сурвивина считается блокирование процессов апоптоза, за что отвечает цитоплазматический пул белка. Показано, что сурвивин ингибирует Bax- и Fas-зависимые сигнальные пути индукции апоптоза. При детальном изучении установлено, что белок непосредственно связывается с каспазами 3 или 7, вызывая супрессию митохондриальной и каспаз-независимой клеточной гибели [15].
Показана роль сурвивина в препятствии гибели клеток вследствие аутофагии. В норме данный механизм позволяет убрать из клетки дефектные органеллы и макромолекулы. Тем не менее в экстремальных условиях при истощении внутриклеточных запасов питательных веществ аутофагия позволяет клетке кратковременно выживать за счет переваривания нормальных компартментов. Естественно, подобные процессы приводят к гибели клетки. Стимулирование экспрессии сурвивина подавляет аутофагию в клетках [16], тогда как его лекарственное подавление, наоборот, увеличивает ее [17].
Данный белок играет важную роль в клеточном делении. На начальных этапах митоза он обеспечивает адекватную ориентацию хромосом и соединение их центромер с микротрубочками веретена деления [18]. Впоследствии сурвивин обеспечивает цитокинез, пока не запустится молекулярный механизм действия актомиозина. Экспериментально подтверждено, что мутации гена сурвивина приводят к дефектам прометафазы, нарушению цитокинеза, митотической катастрофе и усилению апоптоза [19]. Кроме того, нокаут гена летален для зародыша [20].
Обнаружение сурвивина в митохондриях трансформированных клеток является онкоассоциированным феноменом, причины и перспективы которого еще предстоит выяснить. Имеющиеся данные позволяют говорить об участии белка в динамике и матриксном метаболизме митохондрий [21].
Спектр молекул, с которыми взаимодействует сурвивин, достаточно широк, что подтверждает его участие в процессах миграции и адгезии клеток. Перемещение митохондрий в активно мигрирующие области обеспечивает эти процессы энергией аденозинтрифосфата [11, 22].
Сурвивин также имеет проангиогенное значение, поскольку является одним из предшествующих этапов в сигнальном пути фактора роста эндотелия сосудов. Кроме того, ингибирование апоптоза может способствовать ремоделированию сосудов опухоли [23].
Отсутствие сурвивина в эмбриональных стволовых клетках снижает экспрессию ключевых факторов транскрипции, связанных с плюрипотентностью. Как следствие – предотвращение анеуплоидий и образование микроядер в плюрипотентных стволовых клетках [24]. Высокая экспрессия белка в клетках-предшественниках эпителия кишечника значительно ускоряет их развитие, тем самым поддерживая гомеостаз организма [25].
Сурвивин конститутивно экспрессируется в раковых стволовых клетках за счет передачи сигналов через путь митоген-активированной протеинкиназы (MAPK), фактора транскрипции Sp1 (белок специфичности 1) и c-Myc [26]. Усиление экспрессии белка также связано с дометастатическим состоянием стволовых клеток рака молочной железы. Обнаружено, что его проявление обусловлено пролиферацией клеток, а также предшествует эпителиально-мезенхимальному переходу, инвазии и метастазированию через задействование сигнального пути WNT/бета-катенин [27].
Диагностический потенциал белка сурвивина
До недавнего времени высказывалось предположение, что в нормальных клетках взрослого организма экспрессия сурвивина отсутствует. В 2014 г. была показана экспрессия белка Т-клетками, гемопоэтическими клетками-предшественниками, сосудистыми эндотелиальными клетками, а также эритроидными и полиморфноядерными клетками [28]. На патологическую роль белка указывает значительно повышенный уровень экспрессии. Изучение экспрессии маркера иммуногистохимическими методами выявило гиперэкспрессию сурвивина у 2/3 больных остеосаркомой [29] и запущенной нейробластомой [30], половины пациентов с колоректальным раком [31] и лимфомами [2], трети больных раком желудка [32].
Кроме того, повышенная экспрессия белка обнаруживается при доброкачественных и предопухолевых заболеваниях, в том числе полипах толстой кишки, аденоме молочной железы и болезни Боуэна [33]. Накопленные сведения позволяют предположить, что экспрессия сурвивина наблюдается при различных неопластических процессах, причем его уровень напрямую зависит от локализации, стадии и степени гистологической дифференцировки опухоли.
Принимая во внимание межмолекулярные взаимодействия сурвивина, можно отследить его участие во многих внутриклеточных процессах и сигнальных путях, регулирующих инвазию, ангиогенез и пролиферацию опухолевых клеток. В ходе скрининговых исследований выявлена экспрессия белка в эпендимомах [34], ганглиомах [35], питуитарных опухолях [36] и лимфомах [37].
Анализ данных продемонстрировал прямую корреляцию уровня экспрессии с прогрессированием заболевания и выживаемостью больных [38]. Апоптотический индекс при bcl-2-положительных и отрицательных опухолях на фоне роста экспрессии белка сурвивина снижается, что ухудшает выживаемость больных колоректальным раком [31]. Кроме того, соотношение экспрессии в ядре и цитоплазме зависит от степени гистологической злокачественности опухоли [39].
В многоцентровом международном валидационном исследовании добавление сурвивина к молекулярной панели значительно улучшило точность прогнозирования рецидива заболевания и опухоль-специфического выживания больных раком мочевого пузыря [40].
Терапевтический потенциал белка сурвивина
Основная тенденция современной онкологии – разработка новых методов молекулярной терапии злокачественных новообразований. Ключевым фактором в формировании опухолей является нарушение процессов, связанных с апоптозом. Препараты, направленные на активацию апоптоза, способны обеспечить возможность селективного уничтожения раковых клеток. Однако для каждого типа опухолей характерны индивидуальные нарушения апоптоза. Создание препаратов, направленных на белки, участвующие в ряде важных клеточных процессов, может стать рычагом воздействия на такие опухоли. В данном аспекте сурвивин считается весьма перспективной мишенью для создания таких универсальных препаратов [41, 42]. Сеть взаимодействий сурвивина в трансформированных и неповрежденных клетках имеет существенные различия. Значит, возможно избирательное влияние на опухоль-специфичные взаимодействия, приводящее к катастрофическому эффекту для раковых клеток. Перспективность сурвивина как потенциальной универсальной терапевтической мишени обусловлена рядом обстоятельств [43]. Так, выведение из строя сурвивина поставит под угрозу сразу несколько сигнальных сетей, необходимых для поддержания опухоли. Сурвивин может быть уникальной мишенью для молекулярных антагонистов, противораковой вакцины и генной терапии. Сурвивин важен для образования и прогрессирования опухоли, особенно ангиогенеза. Показано, что ингибиторы сурвивина действуют как на трансформированную популяцию, так и на эндотелиальные клетки опухоли. Наконец, несмотря на то что экспрессия сурвивина показана в стимулированных цитокинами гематопоэтических предшественниках и в активированных Т-клетках, нацеливание на этот путь не влияет на нормальные клетки или ткани, что указывает на благоприятный профиль токсичности терапевтических средств на основе сурвивина.
В настоящее время известно, что ингибирование активности сурвивина вызывает спонтанный апоптоз опухолевых клеток и увеличивает эффективность традиционных методов лечения рака. Разработано несколько успешных стратегий анти-сурвивин-терапии, находящихся на разных этапах испытаний.
Сурвивин-направленная иммунотерапия прошла несколько испытаний фазы I с введением сурвивин-пептидов или сурвивин-направленных аутологичных цитотоксических Т-лимфоцитов (CT1), генерированных ex vivo [44, 45]. Вакцинация на основе сурвивина оказалась безопасной, лишенной побочных эффектов и связанной с антиген-специфическими иммунологическими ответами [44, 46]. На ингибирование сурвивина in vivo направлен специфически взаимодействующий пептид, распознающий сурвивин и вызывающий деградацию лигандного комплекса сурвивина [47]. Кроме того, направленное ингибирование сурвивина может быть достигнуто с помощью устройств доставки лекарственных средств на основе наночастиц в сочетании с биосовместимыми терапевтическими средствами [48]. Другие исследуемые стратегии нацелены на подавление экспрессии его гена: они включают разработку антисмысловых олигонуклеотидов, siRNA [49], рибозимов, разрушающих мРНК сурвивина [50]. Определенные успехи достигнуты при использовании пептида шапердина, соответствующего участку сурвивина, по которому он связывается с шапероном Hsp90 (от 79 до 90 а.о.). Этот пептид, блокируя взаимодействие сурвивина с шапероном, приводит к гибели опухолевых клеток [51]. Кроме того, определенный интерес представляют исследования по созданию специфичных пептидов, блокирующих сурвивин по BIR-домену и участкам его димеризации [52, 53].
Вероятно, оптимальным при лечении рака будет использование анти-сурвивин-терапии в сочетании с традиционными методами лечения различных видов злокачественных новообразований [54].
Прогностический потенциал белка сурвивина
Исследование мутационного профиля гена сурвивина (BIRC5) позволило определить несколько однонуклеотидных полиморфизмов, которые можно отнести к онкоассоциированным мутациям. Это позволяет определить генетический риск предрасположенности ткани к злокачественному перерождению [55–57].
Неблагоприятный прогноз при повышении уровня экспрессии белка сурвивина продемонстрирован как при немелкоклеточном раке легкого [58], так и при злокачественных новообразованиях системы крови [59]. Показано также, что увеличение содержания белка в цитоплазме связано с худшим прогнозом. В то же время высокие общие уровни как ядерной, так и цитоплазматической фракции сурвивина являются независимыми предикторами лучшего ответа на лучевую терапию при диффузных астроцитарных опухолях [60]. Снижение экспрессии сурвивина при проведении химиолучевой терапии колоректального рака коррелирует с увеличением доли клеток в апоптозе. Кроме того, высокая экспрессия белка ассоциируется с большим количеством рецидивов [61] и пятикратным увеличением вероятности развития метастазов после лечения [62].
Прогностическая значимость экспрессии сурвивина наиболее ярко может быть продемонстрирована в ретроспективных исследованиях. Так, метаанализ 14 крупных исследований на выборке из 2165 больных раком мочевого пузыря показал значимую взаимосвязь уровня экспрессии сурвивина со временем наступления рецидива, опухолеспецифической и общей выживаемостью [63]. Установлено, что при раке мочевого пузыря повышенная экспрессия белка коррелирует с неблагоприятным прогнозом. Метаанализ 16 исследований на выборке из 1260 пациентов с глиомами выявил худшие показатели общей и безрецидивной выживаемости, а также выживаемости без прогрессирования у больных с высоким уровнем экспрессии сурвивина [64].
Заключение
Открытый в 1997 г. сурвивин продемонстрировал уникальные возможности для фундаментальных и трансляционных исследований. На сегодняшний день существует несколько стратегий терапии, направленных на разрушение взаимосвязей сурвивина, нашедших принципиальное подтверждение. Ряд стратегий прошли первые фазы клинических испытаний.
Для расширения знаний о роли регуляторов в генезе, диагностике и лечении опухолей необходимы дальнейшие исследования, посвященные выявлению мишеней сурвивина и определению их биологических функций.
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.