Особенности синтеза биотехнологических препаратов
Технический прогресс в области биологии и медицины, ускоряющийся с каждым десятилетием, радикально изменил прогноз многих тяжелых заболеваний. Так, в начале прошлого столетия совершенно новые возможности в лечении сахарного диабета (СД) дало открытие инсулина. В 1974 г. был осуществлен полный химический синтез человеческого инсулина [1], а чуть позже появился генно-инженерный человеческий инсулин, который стал первым патентованным препаратом, синтезированным с помощью технологии рекомбинантной ДНК. В 1982 г. он был одобрен для клинического использования [2].
Все современные препараты инсулина относятся к классу лекарственных средств, производимых с помощью биотехнологий. Медицинской биотехнологией называют методы получения лекарств из живых клеток – бактерий, вирусов, дрожжевых грибов, культур клеток различных тканей. В отличие от химического синтеза препаратов процесс создания биоинженерных препаратов гораздо более чувствителен к деталям технологии: требуются тщательный выбор и очистка субстрата, точнейшее соблюдение температурного режима, использование строго определенных концентраций растворов и т.д.
Препараты, синтезируемые химическим путем, имеют сравнительно простую химическую структуру и способ производства. Воспроизведенная копия такого препарата (дженерик) должна содержать активное вещество с той же молекулярной структурой и физико-химическими, фармакокинетическими свойствами, иметь такую же активность, лекарственную форму и путь введения, что и оригинальный препарат. Из-за хорошей воспроизводимости технологии получения химических лекарств доказательства биоэквивалентности достаточно, чтобы считать дженерик идентичным оригинальному препарату, дополнительных клинических испытаний не требуется [3]. Поэтому для дженериков предусмотрена сокращенная процедура регистрации, что приводит к снижению их себестоимости.
Иначе обстоит дело с биотехнологическими препаратами. Воспроизвести точную копию молекулы такого препарата практически невозможно, так как биоинженерные препараты представляют собой белки. Белки имеют высокую молекулярную массу (в 100–1000 раз больше, чем у обычных химических препаратов) и крайне сложную структуру молекулы, включающую первичный, вторичный, третичный и иногда четвертичный уровни. В процессе формирования пространственной структуры, отвечающей за биологические свойства, молекула белка значительно модифицируется за счет внутримолекулярных сшивок, вырезаний частей молекулы, присоединения различных химических групп. Именно поэтому даже очищенный оригинальный препарат неоднороден и представлен целым рядом белковых молекул, незначительно различающихся между собой [4], а малейшие изменения технологии синтеза могут существенно изменить биологические свойства конечного продукта [5].
Кроме того, культуры клеток, в которых происходит биосинтез, высоко изменчивы. Внедрение в клетку нужного фрагмента ДНК каждый раз приводит к получению несколько отличной рекомбинантной ДНК. Однажды созданная линия рекомбинантных клеток уникальна. Эта линия дает начало оригинальному банку клеток, к характеристикам которого приспосабливается весь дальнейший процесс производства препарата [5, 6]. Следовательно, получить точную копию биопрепарата, используя другой банк клеток, принципиально невозможно.
Биосимиляры
Истечение срока патентной защиты оригинального биопрепарата открывает возможность для создания его версии, или биосимиляра (англ. biological drug – биологический препарат и similar – похожий). Биосимиляр – это воспроизведенное при помощи биотехнологий лекарственное средство, схожее с оригинальным биотехнологическим лекарственным средством и представленное на регистрацию по истечении срока действия патента оригинального лекарственного средства.
Это различие важно понимать, назначая неоригинальные синтетические и биотехнологические препараты.
Биосимиляры – это не дженерики. Та степень сходства, которая существует между оригинальным химическим препаратом и его дженериком, недостижима в области биотехнологических продуктов. Введение отдельного термина для версий биопрепаратов жестко разграничивает группы воспроизводимых препаратов.
Последствия, к которым может привести отличие структуры биосимиляра от структуры соответствующего оригинального препарата, непредсказуемы. Имеются данные о развитии смертельно опасного осложнения после небольшого изменения технологии производства рекомбинантного эритропоэтина [7]. Именно поэтому европейские специалисты отмечают, что сокращенная процедура регистрации, принятая для дженериков, неприемлема для биосимиляров [8, 9].
Впервые термин «биосимиляр» и его определение появились в 2003 г. в директиве Европейского союза, где подчеркивалась важность отличий биосимиляров от дженериков [10]. Впоследствии Европейское агентство по лекарственным средствам (European Medicines Agency – EMA) разработало ряд руководств, касающихся биопрепаратов и биосимиляров, которые регулярно пересматриваются и обновляются [11–13]. Данные руководства содержат требования к проведению доклинических и клинических исследований биосимиляров [12], оценке иммуногенности [13] и др. Согласно требованиям EMA биосимиляр прежде всего должен обладать высокой степенью сходства с оригинальным препаратом как по физико-химическим, так и по биологическим свойствам. Рекомендуется ступенчатый подход к сравнению оригинальных препаратов и биосимиляров, включающий доклинические и клинические этапы. При этом объем исследований на каждом следующем этапе зависит от результатов предыдущего [12]. Принципы, заложенные в этих документах, отразились в законодательстве некоторых стран.
Российская законодательная база по биосимилярам в настоящее время находится на стадии разработки. В 2013 г. была опубликована позиция Российской ассоциации эндокринологов в отношении биологических препаратов [14]. Проект федерального закона «О внесении изменений в Федеральный закон № 61 “Об обращении лекарственных средств”», касающийся создания нормативно-правовой базы по регистрации лекарственных препаратов, сначала обсуждался в рамках экспертной сессии, посвященной проблеме биосимиляров (2014) [15], а затем публично. После этого в Федеральном законе № 61 были сделаны соответствующие поправки и изменения. Так, в ст. 4 появились термины «биологический лекарственный препарат», «биоаналоговый лекарственный препарат (биоаналог)», «препарат сравнения», «взаимозаменяемые лекарственные препараты». В ноябре 2014 г. законопроект был принят Госдумой во втором чтении, в декабре подписан Президентом РФ. Предполагается, что большинство норм закона вступят в силу с 2016 г. [16, 17].
Биосимиляры человеческого инсулина и его аналогов: подтверждение соответствия
В настоящее время проблемы создания и оценки эффективности биосимиляров особенно актуальны для аналогов человеческого инсулина.
С начала 2000-х гг. целый ряд компаний начал производство неоригинальных препаратов рекомбинантного человеческого инсулина в странах, где регулирующие правовые нормы в отношении биопрепаратов не были развиты или отсутствовали. Так, в Польше был выведен на рынок Генсулин, в Индии – Инсуген, Восулин, Биосулин N, Биосулин R и Биосулин 30/70 [2].
В России также используются препараты рекомбинантного инсулина человека различных производителей. Сравнительный анализ их фармакокинетических характеристик показал, что разные препараты инсулина с одинаковым международным непатентованным наименованием имеют колоссальные различия по времени начала действия, пику и продолжительности действия, а также составу дополнительных ингредиентов [18], что, несомненно, влияет на эффективность инсулинотерапии.
Именно поэтому для биосимиляров инсулина EMA рекомендует проведение следующего минимума клинических исследований [19]:
В настоящее время биосимиляры аналогов инсулина, в том числе инсулина гларгина, получили доступ на рынок в таких странах, как Китай, Индия, Пакистан, Перу, Таиланд, Мексика и Кения [2, 6]. В большинстве из них версии инсулина зарегистрированы без соблюдения требований к демонстрации идентичности оригинальному препарату Лантус (компания «Санофи») [6].
Так, в Китае эффективность Базалина (препарата, позиционируемого как «отечественный» гларгин) и его биоэквивалентность Лантусу были установлены только на основании результатов эугликемического клэмпа у здоровых добровольцев. В другом исследовании биоэквивалентность воспроизведенного в Китае препарата и оригинального гларгина была установлена на основании показателей тощаковой и постпрандиальной гликемии у пациентов с СД 2 типа при применении инсулина в комбинации с пероральными сахароснижащими препаратами. В 2006 г. производство Базалина начато китайско-корейской корпорацией. В 2009 г. в Колумбии заявка местного производителя на регистрацию Базалина была отклонена в связи с отсутствием иммуногенетических исследований [2].
Гларитус, один из первых биосимиляров гларгина, был зарегистрирован в Индии (компания «Вокхард») в 2009 г. [20]. В настоящее время его иммуногенность и безопасность по сравнению с Лантусом еще оцениваются в рандомизированном открытом исследовании фазы III с участием пациентов с СД 1 типа (NCT01352663). Завершение работы планируется не раньше января 2016 г. [21]. Для демонстрации биоэквивалентности Гларитуса Лантусу проводилось сравнительное исследование фазы I с использованием клэмп-методов (NCT01357603). Исследование завершено в августе 2012 г., однако его результаты пока не опубликованы [22].
Еще одна неоригинальная версия гларгина, которая производится в Индии с 2009 г. компанией «Биокон», – препарат Базалог. В многоцентровом рандомизированном открытом исследовании фазы III с участием 215 пациентов с СД 1 типа было показано, что применение Базалога и Лантуса позволяет достичь сравнимого гликемического контроля. Такое заключение сделано на основании уровня HbA1c, частоты эпизодов гипогликемии, тощаковой и постпрандиальной гликемии. Однако в протоколе исследования не предусматривалось проведения эугликемического клэмпа [23].
Из аналогов инсулина длительного действия потенциальным образцом для создания биосимиляров являются гларгин и детемир. Однако данные о разработке версий последнего пока отсутствуют. При этом имеются сведения о попытках создать версии аналогов инсулина ультракороткого действия, таких как лизпро и аспарт [6].
Вариабельность действия аналогов инсулина и биосимиляров
Известно, что метаболические эффекты, индуцированные одной и той же дозой инсулина, существенно различаются у разных людей (межиндивидуальная вариабельность действия) и даже у одного человека (интраиндивидуальная вариабельность действия). Данные различия могут быть связаны с особенностями скорости абсорбции и метаболизма инсулина (фармакокинетический аспект вариабельности), а также действия инсулина на чувствительные клетки (фармакодинамический аспект). Для оценки фармакокинетической вариабельности определяют концентрацию инсулина в плазме крови, для оценки фармакодинамической вариабельности применяют клэмп-методы.
Высокая вариабельность кинетики и действия инсулина затрудняет подбор дозы и повышает риск развития гипогликемий [24]. Именно поэтому EMA требует при сравнении биосимиляра с оригинальным инсулином приводить результаты эугликемического гиперинсулинемического клэмпа, в том числе временной профиль введения раствора глюкозы [19].
В исследованиях с использованием клэмп-методов у гларгина по сравнению с НПХ-инсулинами было показано более раннее начало и более равномерный профиль действия c достижением стабильного плато [25]. У больных СД 1 типа межиндивидуальная фармакокинетическая и фармакодинамическая вариабельность гларгина в дозе 0,3 ЕД/кг была достоверно ниже таковой НПХ-инсулина (р < 0,05) и оказалась сравнима с вариабельностью эффекта подачи инсулина в режиме непрерывной подкожной инфузии [26].
С вариабельностью действия инсулина связана вариабельность гликемии (ее колебания в течение суток), для оценки которой сегодня существует около 30 различных методов [27]. Так, в многоцентровом исследовании, включавшем 116 больных СД 2 типа (уровень HbA1c 4,5–8%), оценивалось влияние перевода с НПХ-инсулина на гларгин на показатели вариабельности гликемии, рассчитанные по данным непрерывного мониторинга. После перевода на гларгин наблюдалось значительное увеличение площади под кривой гликемии (AUC), ограниченной нормальными значениями, уменьшение AUC в зоне гипергликемии, а также снижение суточных колебаний уровня глюкозы [28].
При оценке действия пролонгированных аналогов инсулина наиболее показательны данные по вариабельности гликемии в ночные часы и натощак. Так, анализ показателей ночной вариабельности гликемии, в частности высокочувствительного индекса риска гипогликемии (low blood glucose index – LBGI), у пациентов с СД 2 типа, получавших гларгин (n = 27) и НПХ-инсулин (n = 22), продемонстрировал значительное снижение LBGI на фоне применения гларгина по сравнению с НПХ-инсулином (p = 0,04) (рисунок) [29].
Таким образом, снижение вариабельности гликемии, достигаемое за счет снижения вариабельности действия препарата, – одно из главных преимуществ гларгина перед пролонгированными человеческими инсулинами. Это служит основанием для перевода на гларгин тех пациентов, у которых отмечаются резкие колебания гликемии.
Однако можно ли утверждать, что описанный эффект будет выражен в той же степени у биосимиляров гларгина?
Феномен вариабельности действия разных препаратов одного и того же инсулина обусловлен рядом факторов. Первый – особенности производства и хранения инсулина.
Производство инсулина – сложный многостадийный процесс, включающий [6, 18]:
1) подготовку отрезка ДНК, кодирующей молекулу инсулина (вектора);
2) выбор платформы или «хозяина», то есть тех клеток, в ДНК которых будет интегрирован вектор и которые затем будут производить инсулин. Обычно это бактерии (Escherichia coli) или грибы (Saccharomyces cerevisiae или Pichia pastoris);
3) трансфекцию, то есть перенос векторной ДНК в генетический аппарат «хозяина»;
4) отбор клеток и выделение клеточной линии, содержащих рекомбинантную ДНК;
5) культивирование клеток в питательной среде, в которой нарабатываются продукты их жизнедеятельности, в том числе белок, закодированный векторной ДНК;
6) извлечение и очистку продукта от С-пептида (при использовании E. coli);
7) формирование вторичной структуры инсулина путем образования дисульфидных мостиков и отщепления ненужных аминокислотных последовательностей (при использовании E. coli, при использовании грибов белок секретируется в питательную среду уже сформированным в нужную пространственную структуру);
8) очистку и концентрацию с использованием кристаллизации и хроматографии, лиофилизацию, изготовление лекарственной формы.
На любой стадии производства белкового препарата могут появиться различия, затрагивающие как первичную структуру молекулы, так и ее финальную пространственную упаковку, определяющую биологические свойства. Кроме того, возможно образование побочных продуктов, связанных с экспрессией вектора и ведущих к различиям в процессинге белка (например, окисление и гликозилирование). Так, для производства Лантуса, оригинального гларгина, в качестве платформы используется E. coli, а для синтеза Базалога – грибы Pichia pastoris. Это приводит к прикреплению трех дополнительных полисахаридных остатков к молекуле Базалога.
Известно, что другие различия в используемых материалах и методах биосинтеза и хранения продукта (условия культивации, состав питательной среды, дизайн оборудования) также вносят вклад в вариабельность свойств конечного продукта [6].
Еще одна важная задача – сохранить неизменность препарата. Данные кристаллографии свидетельствуют, что позиция А21 в молекуле инсулина аргинин-B31-аргинин-B32 вовлекается в несколько межгексамерных контактов. Замена аспарагина в позиции А21 на глицин (глицин A21) привела к уменьшению количества межгексамерных связей, то есть меньшей кристаллизации, что обеспечило стабильность при длительном хранении [1].
Проводилось сравнение уровня белков с высокой молекулярной массой (high molecular weight proteins – HMWP) до и после хранения при температуре +25 °C в оригинальном и неоригинальных препаратах гларгина. Оказалось, что уровень HMWP исходно находился в пределах допустимых значений во всех образцах, через 28 дней хранения он значительно превышал норму в образцах Гларитуса и Базалина, оставаясь практически неизменным в образце Лантуса [6].
Второй фактор вариабельности действия – техника инъекции инсулина. Биосимиляры аналогов инсулина, как правило, поставляются на рынок с собственными устройствами для введения (инъекторами, или шприц-ручками). Согласно руководству EMA устройства для введения инсулина также подлежат жесткому контролю качества [30].
Не так давно проведены испытания инъекторов Pen Royale и DispoPen, предназначенных для введения Гларитуса, инъектора GanLee Pen для Базалина, инъекторов ClikSTAR и SoloSTAR для Лантуса. Показано, что неоригинальные устройства имеют более высокий коэффициент вариации при введении определенных доз инсулина. Сила, необходимая для инъекции инсулина, оказалась выше у инъекторов, предназначенных для введения биосимиляров [31].
Иммуногенная и митогенная активность аналогов инсулина и биосимиляров
Инсулин, как и любой биопрепарат, может вызывать реакцию иммунной системы. Среди возможных причин выделяют измененную структуру белка действующего вещества и наличие примесей (например, фрагментов клеток-продуцентов или продуктов реакции с вспомогательными веществами). Иммунная реакция может проявляться по-разному – от выработки антител, не снижающих эффективность терапии, до полной нейтрализации и инактивации инсулина антителами.
Есть предположение, что основная причина выработки антител на рекомбинантный человеческий инсулин – его способность к агрегации в мультимеры. Возможной причиной агрегации считается взаимодействие инсулина с покрытиями, встречающимися в процессе производства, хранения и введения. Агрегаты усиливают иммуногенность экзогенного инсулина, изменяя толерантность В-лимфоцитов, так как представляют повторяющиеся эпитопы, «напоминающие» бактериальные антигены и вызывающие образование специфических антител [6, 32].
ΕΜΑ предписывает тщательно изучать иммуногенность биопрепаратов [13]. При этом первичной конечной точкой является формирование антител к биопрепарату. В настоящее время иммуногенные свойства большинства биосимиляров изучены недостаточно.
Как и человеческий инсулин, гларгин оказывает метаболический и рост-стимулирующий (митогенный) эффекты в клетках-мишенях. Митогенный эффект реализуется главным образом через рецепторы инсулиноподобного фактора роста 1 (ИФР-1). Известно, что в условиях in vitro способность гларгина вызывать активацию (аутофосфорилирование) рецептора ИФР-1 в пять – восемь раз выше, чем у нативного инсулина. Однако в условиях in vivo избыточной стимуляции рецептора ИФР-1 не происходит. Дело в том, что в организме гларгин трансформируется с образованием двух основных метаболитов – M1 и M2, а также промежуточного продукта IM. Сначала с карбоксильного конца В-цепи удаляется остаток аспарагина (образуется промежуточный метаболит IM), далее – еще один аспарагиновый остаток с того же конца, при этом В-цепь становится идентичной таковой в молекуле инсулина человека (метаболит М1). Биотрансформация начинается уже в месте инъекции и значительно ускоряется в плазме [24]. В итоге основным метаболитом гларгина является M1: он быстро попадает в кровоток и его концентрация в течение 24 часов преобладает над концентрацией интактного гларгина и всех других метаболитов [33, 34]. Отщепление дополнительных аргининовых остатков в процессе биотрансформации нивелирует повышенную способность гларгина к стимуляции рецептора ИФР-1 [33, 35].
Последние эксперименты на двух линиях клеток рака молочной железы человека (MCF-7), в различной степени экспрессирующих рецептор ИФР-1 и инсулиновый рецептор, показали, что пролиферативный эффект гларгина не отличается от эффекта человеческого инсулина и других инсулиновых аналогов. Митогенные свойства, связанные с активацией сигнального пути ИРФ-1, не сопровождались усилением пролиферативного ответа из-за быстрого превращения гларгина в метаболиты М1 и М2 [36]. Анализ результатов экспериментальных исследований, посвященных митогенным свойствам инсулиновых аналогов, продемонстрировал, что пролиферативный и онкогенный потенциал гларгина не отличается от потенциала инсулина человека [37].
Согласно требованиям EMA в обязательные доклинические тесты в ходе испытаний препаратов инсулина должны включаться биоанализ аффинности в условиях in vitro, анализ содержания инсулина и связывания с рецепторами ИФР-1, а также влияния на пролиферацию клеток [18]. Для известных в настоящее время биосимиляров гларгина результаты подобных исследований еще не получены [20, 21, 38].
Данные последних клинических исследований свидетельствуют о сходном риске развития онкологических заболеваний при лечении гларгином и другими инсулинами. Метаанализ 29 рандомизированных клинических исследований фаз II–IV, включавших в общей сложности 10 880 больных СД 1 и 2 типа, из которых 5657 получали гларгин, показал, что терапия данным аналогом не ассоциирована с увеличением частоты злокачественных новообразований [39]. Исследование ORIGIN, наиболее масштабное по количеству участников (12 537 человек) и длительности наблюдения (6,2 года), также не выявило каких-либо изменений в частоте развития рака и смертей от онкологических заболеваний у лиц с дисгликемией, получавших гларгин (по сравнению со стандартным лечением) [40]. Онкогенный потенциал биосимиляров гларгина еще необходимо изучать.
Заключение
Анализ приведенных данных свидетельствует о возможности существенных различий фармакокинетических и фармакодинамических свойств пролонгированных аналогов инсулина и их биосимиляров. Биосимиляр аналога инсулина может безопасно заменить оригинальный препарат только в том случае, если он имеет сопоставимую вариабельность действия, а его онкогенные и иммуногенные свойства изучены в клинических исследованиях.
Между тем в системах здравоохранения ряда стран, включая Россию, практикуется автоматическая замена оригинальных препаратов инсулина на биосимиляры, априори считающиеся эквивалентами. Подобная практика, по выражению L. Heinemann, напоминает огромный эксперимент, в котором участники не давали согласия на участие и не были информированы о возможных последствиях [8].
Гларгин – первый и наиболее изученный длительно действующий аналог инсулина, способный удовлетворять потребность в базальном инсулине на протяжении 24 часов. Эффективность и безопасность оригинального препарата гларгина (Лантуса) доказана многочисленными клиническими исследованиями. Однако вариабельность эффекта, иммуногенные и митогенные свойства биосимиляров гларгина изучены недостаточно.
В настоящее время очевидна необходимость введения специального регулирования обращения биосимиляров в Российской Федерации, установления комплексных требований к определению их эффективности и безопасности по каждому показанию, осуществления специальных мер по фармаконадзору, особенно в отношении отслеживания иммуногенности в долгосрочном периоде, формирования базы данных по безопасности уже обращающихся и вновь регистрируемых препаратов. Такой подход, зафиксированный в позиции экспертов Российской ассоциации эндокринологов [14], может служить основой для принятия решения о возможности применения и взаимозаменяемости тех или иных биосимиляров аналогов инсулина.
Biosimilar Insulin Analogues: What We Have to Know about Them
V.V. Klimontov, N.Ye. Myakina
Research Institute of Clinical and Experimental Lymphology
Contact person: Vadim Valeryevich Klimontov, klimontov@mail.ru
Use of biotechnological products in many areas of medicine was shown to substantially affect prognosis of various severe diseases. Insulin glargine is the first and most studied long acting insulin analogue. Due to the fact that the term of patent protection for many insulin analogues including insulin glargine is nearing expiration, novel opportunities for manufacturing their follow-on biologics, or biosimilars. However, high complexity of molecular structure and special technological requirements to manufacture of biopreparations do not allow to consider biosimilars as reproduced replicas of chemical medicinal agents. Here, we discuss occurring and potential problems related to manufacture, registration and use of insulin biosimilar such as glargine: contemporary European requirements to confirm drug bioequivalence, variability of action for glargine and its biossimilar, features of their pharmacokinetics and pharmacodynamics as well as immunogenic and oncogenic properties.
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.