Распространенность сахарного диабета (СД) из года в год увеличивается. В настоящее время она достигла масштабов эпидемии. Так, согласно данным экспертов Международной федерации диабета, в 2017 г. в мире насчитывалось 425 млн больных. К 2045 г. ожидается прирост заболеваемости на 48%, то есть число страдающих СД может достичь 629 млн [1].
Сахарный диабет ассоциируется с развитием ряда заболеваний, прежде всего сердечно-сосудистых. Так, на долю сердечной недостаточности приходится до 70% случаев.
У пациентов с диабетом в отличие от лиц без нарушений углеводного обмена риск развития сердечно-сосудистых заболеваний выше в два – пять раз. Таковые обусловлены прежде всего атеросклерозом. Течение сердечно-сосудистой патологии осложняется вследствие артериальной гипертензии, дислипидемии, активации нейрогормональных и воспалительных механизмов [2].
Кроме того, сердечно-сосудистые заболевания являются основной причиной смерти больных СД.
В клинических и экспериментальных исследованиях доказано положительное влияние физических упражнений на сердечно-сосудистую систему при сахарном диабете. Установлено, что их кардиопротективный эффект реализуется за счет ряда молекулярных механизмов (рис. 1) [3, 4]. В результате физических нагрузок улучшается метаболизм глюкозы, повышается чувствительность клеток к инсулину, на фоне снижения массы тела улучшаются показатели кардиореспираторной функции [5, 6].
У пациентов с СД 2 типа физическая активность помимо снижения риска развития сердечно-сосудистых заболеваний способствует уменьшению риска общей и сердечно-сосудистой смерти [7, 8]. При этом указанный эффект зависит от интенсивности упражнений. Так, G. Hu и соавт. доказали, что физическая активность среднего и высокого уровня способствовала снижению риска общей и сердечно-сосудистой смерти независимо от показателей индекса массы тела, артериального давления, общего холестерина и факта курения [9]. Важна также продолжительность нагрузок. J. Karjalainen и соавт. выявили отрицательную зависимость между физической активностью и ближайшим сердечно-сосудистым событием. Тем не менее тренировки в домашних условиях имели незначительное влияние на профиль риска развития сердечно-сосудистых заболеваний у пациентов с ишемической болезнью сердца и СД 2 типа [10].
Доказано, что для достижения значимого эффекта необходимы регулярные аэробные нагрузки средней интенсивности не менее 150 минут в неделю или высокой интенсивности не менее 75 минут в неделю [11].
Диабетическая кардиомиопатия: признаки и патогенез
У многих пациентов с СД развивается диабетическая кардиомиопатия (ДКМП). Для заболевания характерно наличие структурно-функциональных изменений миокарда в отсутствие атеросклероза коронарных артерий, явной ишемической болезни сердца и клапанной патологии [12].
Патогенез ДКМП многофакторный: изменение метаболизма миокарда (нарушение энергетического и кальциевого обмена, функции митохондрий), усиление окислительного стресса, развитие фиброза миокарда, повышение апоптоза и нарушение микроциркуляции. Сначала возникает диастолическая дисфункция, далее нарушается сократительная функция миокарда с развитием клинически значимой сердечной недостаточности [13].
Влияние физических нагрузок на патогенетические механизмы
Метаболизм кардиомиоцитов
Основными энергетическими субстратами в миокарде являются глюкоза и свободные жирные кислоты (СЖК). Глюкоза проникает в цитоплазму кардиомиоцита с помощью глюкозного транспортера 4 (ГЛЮТ-4). В результате гликолиза образуется пируват, который при участии пируватдегидрогеназы перемещается в матрикс митохондрий и окисляется до ацетил-коэнзима А (ацетил-КоА). В митохондриях происходит β-окисление жирных кислот с образованием ацетил-КоА. Восстановленные в ходе цикла Кребса формы никотинамидадениндинуклеотида 2 и окисленного флавинадениндинуклеотида 2 поступают в дыхательную цепь с последующим синтезом аденозинтрифосфата (АТФ). Таким образом, на уровне митохондрий глюкоза и СЖК конкурируют при образовании ацетил-КоА (рис. 2).
При сахарном диабете энергетический обмен в миокарде нарушается, за счет усиления β-окисления жирных кислот уменьшается скорость окисления глюкозы. Кроме того, снижаются экспрессия и транслокация инсулинзависимого переносчика глюкозы ГЛЮТ-4. Как следствие, снижается транспорт глюкозы в кардиомиоциты и подавляется гликолиз, энергия которого используется ионными насосами.
Одним из основных маркеров ДКМП является нарушение внутриклеточного гомеостаза кальция (Са). Дефицит гликолитической фракции АТФ обусловливает снижение активности Са2+-АТФазы саркоплазматического ретикулума (SERCA2a) и увеличение концентрации ионов Са в цитозоле. В результате диастолическая функция сердца нарушается и повышается ригидность миокарда. Это может вызвать ухудшение микроциркуляции и необратимое повреждение кардиомиоцитов [14].
Согласно результатам исследований, умеренные физические нагрузки могут усиливать экспрессию ГЛЮТ-4, а также увеличивать транспорт глюкозы и активировать пируватдегидрогеназу, которая играет ключевую роль в выборе энергетических субстратов для миокарда [15]. Физические упражнения способны улучшать экспрессию и активность SERCA2a. Это достигается регулированием высвобождения и повторного захвата Са2+ саркоплазматическим ретикулумом. В результате улучшается диастолическая функция сердца [16].
Функция митохондрий
Митохондрии признаны центром энергетического обмена. Поэтому их дисфункция может играть решающую роль в патогенезе ДКМП. Так, при ДКМП в миокарде отмечаются снижение плотности митохондрий, их отек и разрушение, увеличение митохондриального матрикса [17].
Умеренные нагрузки препятствуют развитию дисфункции митохондрий путем увеличения в клетке количества 1-α-коактиватора γ-рецептора, активируемого пролифераторами пероксисом (PGC-1α). PGC-1α стимулирует экспрессию ряда факторов транскрипции, активирующих гены ядерного и митохондриального генома. Они необходимы для биосинтеза митохондрий [18].
Кроме того, механизмы, с помощью которых физические упражнения способны улучшить функцию митохондрий, могут быть связаны с регуляцией уровня Са2+. Последний является ключевым активатором ферментов в митохондриях [16, 19].
Упражнения с отягощением улучшают работу сердца и функцию митохондрий, что сопровождается повышением экспрессии белков биогенеза митохондрий, таких как PGC-1α и транскрипционный фактор A митохондрий [20].
Окислительный стресс
Окислительный стресс считается ключевым звеном в развитии ДКМП. В физиологических условиях в организме поддерживается баланс между активными формами кислорода (АФК) и свободными радикалами. Фосфатидилинозитол-3-киназа (PI3K) фосфорилирует фактор транскрипции – ядерный респираторный фактор 2 (Nrf2), который играет важную роль в регуляции экспрессии генов антиоксидантных ферментов.
В условиях гипергликемии повышается продукция активных форм кислорода и одновременно снижается активность антиоксидантных систем, что ведет к накоплению свободных радикалов и повреждению кардиомиоцитов (рис. 3).
К основным механизмам, с помощью которых физические упражнения приводят к уменьшению окислительного стресса, относятся [21]:
Установлено, что физические нагрузки приводят к активации Nrf2, который регулирует экспрессию естественных антиоксидантов. Таким образом обеспечивается защита клеток от АФК [22, 23]. При длительных аэробных нагрузках низкой интенсивности повышенный уровень малонового диальдегида в миокарде снижается и увеличивается активность антиоксидантных систем, таких как супероксиддисмутаза (СОД), глутатионпероксидаза и каталаза [24]. Кроме того, доказано влияние физических упражнений на уровни ингибитора активатора плазминогена 1 и эндотелиальной NO-синтазы [25].
Апоптоз кардиомиоцитов
Апоптоз кардиомиоцитов, индуцированный сахарным диабетом, является отличительной чертой ДКМП.
В настоящее время выделяют два механизма запуска гибели клеток: внутренний (митохондриальный) и внешний (рецепторный) (рис. 4). При внутреннем – изменяется баланс митохондриальных противоапоптотических (белка В-клеточной лимфомы 2 (Bcl-2)) и апоптотических (Bax, Bid) факторов, что приводит к открытию пор на наружной мембране митохондрий и выходу цитохрома С в цитоплазму.
Внешний механизм апоптоза заключается в активации каспазы 8, которая напрямую связывает рецепторы клеточной гибели с другими каспазами. Например, каспаза 8 расщепляет белок Bid. Его С-фрагмент (tBid) перемещается в митохондрии и активирует протеин Bax, стимулируя выброс апоптогена.
Высвободившийся цитохром C соединяется с апоптоз-активирующим фактором 1 (Apaf-1) и биотинилированной аденозинтрифосфорной кислотой (dATФ). Это запускает олигомеризацию Apaf-1 и активацию прокаспазы 9. Активированная каспаза 9 переводит прокаспазу 3 в активный фермент. В результате запускается каскад реакций, ведущих к апоптозу.
В индукции апоптоза участвуют также митоген-активируемые протеинкиназы (MAPK), в частности c-Jun N-терминальная киназа (JNK), которая активирует каспазу 8 и клеточный белок Bax. Это стимулирует выход цитохрома С из митохондрий и, как следствие, апоптоз [26].
В условиях гипергликемии избыточное образование АФК может приводить к высвобождению цитохрома С в цитоплазму за счет повышения экспрессии Bax и повреждения структуры митохондрий, что вызывает активацию каспазы 3 и гибель кардиомиоцитов. Этот процесс играет важную роль в гипертрофии и ремоделировании миокарда, а также в развитии сердечной недостаточности.
S. Veeranki и соавт. установили, что физические упражнения уменьшают высвобождение цитохрома С в цитоплазму за счет увеличения митохондриального трансмембранного потенциала. Таким образом предотвращается апоптоз кардиомиоцитов [27]. В ряде исследований, в которых моделировали ожирение у животных, физические нагрузки приводили к снижению фосфорилирования JNK, то есть блокировался один из сигнальных путей гибели клетки. Согласно данным М. Kanter и соавт., физические нагрузки низкой интенсивности вызывают торможение апоптоза кардиомиоцитов, улучшают морфологические и биохимические показатели миокарда [24].
В исследовании, проведенном S. Khakdan и соавт., интервальные тренировки высокой интенсивности привели к значительному увеличению экспрессии сиртуина 1 (SIR1) и Bcl-2 у животных с СД [28]. По-видимому, физические нагрузки высокой интенсивности защищают миокард, способствуя блокаде стресс-индуцированного апоптоза эндоплазматического ретикулума [25].
Физические упражнения и проявления заболевания
Фиброз миокарда
Фиброз миокарда – гистологическое проявление ДКМП. Отложение коллагена в клетках миокарда, интерстициальный и периваскулярный фиброз в конечном итоге вызывают нарушение структуры и функции сердца [29].
Результаты многочисленных исследований свидетельствуют, что умеренные физические нагрузки могут снизить уровень глюкозы в крови, уменьшить фиброз миокарда, способствовать обратному ремоделированию сердечной мышцы и улучшить функцию сердца [29]. В качестве механизма уменьшения фиброза миокарда указано снижение перегрузки давлением вследствие его нормализации [29]. На фоне физических упражнений увеличивается содержание матриксной металлопротеиназы 2, которая участвует в разрушении коллагена и ингибирует фиброз в миокарде [30]. В условиях гипергликемии происходит гликирование коллагена с образованием конечных продуктов гликирования. Последние повышают жесткость сосудов сердца и усиливают эндотелиальную дисфункцию [31].
К механизмам, с помощью которых физические упражнения могут уменьшить фиброз миокарда, также следует отнести улучшение энергетического обмена, снижение уровня глюкозы в крови и отложения гликогена в миокарде [32].
U. Novoa и соавт. доказали, что интенсивная регулярная физическая нагрузка оказывает положительное влияние на ремоделирование сердца, о чем свидетельствуют снижение гипертрофии миоцитов, уменьшение отложения коллагена и фиброза миокарда [33].
Микрососудистые нарушения
Нарушение микроциркуляции является одним из патологических изменений при ДКМП. Гипергликемия обусловливает изменение структур эндотелия и развитие эндотелиальной дисфункции. Повышается продукция факторов, способствующих ангиоспазму, нарушению проницаемости сосудистой стенки, гиперкоагуляции, тромбообразованию, миграции и пролиферации гладкомышечных клеток, активации провоспалительных факторов. В результате нарушаются кровоснабжение миокарда и его функции.
В настоящее время установлены два механизма протективного воздействия физических нагрузок на микрососудистое русло:
Заключение
Физические упражнения оказывают кардиопротективное воздействие у больных с диабетической кардиомиопатией. Под влиянием физических нагрузок улучшается энергетический метаболизм в миокарде, нормализуется обмен кальция, снижается окислительный стресс, скорость апоптоза кардиомиоцитов и выраженность фиброза, улучшается микроциркуляция. Поэтому регулярные тренировки являются важным немедикаментозным методом снижения сердечно-сосудистого риска.
Выявление молекулярных механизмов, лежащих в основе указанных выше эффектов физических упражнений, имеет большое значение для разработки новых терапевтических стратегий.
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.