Введение
Циркадианные ритмы – это физиологические и поведенческие циклы, которые обеспечиваются собственным внутренним осциллятором и сохраняются в отсутствие внешнего «регулятора» [1]. Способность поддерживать 24-часовой суточный ритм является фундаментальной характеристикой циркадианной системы, позволяющей организму адаптироваться к условиям окружающей среды.
Работа циркадианной системы обеспечивается четырьмя основными компонентами:
Внутренний циркадианный осциллятор, или генератор циркадианных ритмов, – это парные супрахиазменные ядра (СХЯ) в передних отделах гипоталамуса. Каждое СХЯ состоит из 8000–10 000 нейронов, автономно генерирующих циркадианные ритмы, что подтверждено в экспериментах с изоляцией отдельных клеток in vitro. Внутренний период осцилляций СХЯ примерно (но не точно) составляет 24 часа, поэтому он синхронизируется с 24-часовым циклом вращения Земли. Этот процесс, известный как фоторегулировка (англ. photo-entrainment), обеспечивается через световой незрительный путь от сетчатки к СХЯ – ретиногипоталамический тракт [2]. Он начинается от небольшой группы светочувствительных ганглионарных клеток сетчатки, содержащих светочувствительный белок меланопсин. Светочувствительные ганглионарные клетки деполяризуются под воздействием света в спектре 480–460 нм (голубой свет), после чего по эфферентным волокнам сигнал передается в СХЯ. Однако в экспериментах с мышами, нокаутными по гену, синтезирующему меланопсин, и мышами с врожденным отсутствием светочувствительных клеток показано, что палочки и колбочки также способны частично брать на себя подобную функцию, участвуя в фоторегулировке [2].
Результаты, полученные в ряде экспериментов с использованием генетических, молекулярных и биохимических методов у многоклеточных организмов, продемонстрировали, что практически все клетки генерируют собственный суточный ритм. Кроме того, такие физиологические процессы, как колебания температуры тела, секреция гормонов, употребление пищи, тоже участвуют в синхронизации циркадианной системы [3]. СХЯ в свою очередь рассматривается как главный синхронизатор, объединяющий множество периферических подсетей, генерирующих ритмы, в одну систему.
Выделяют два основных пути передачи информации от СХЯ подчиненным структурам:
СХЯ образует нейронные связи с некоторыми отделами головного мозга, прежде всего с ядрами ствола, отвечающими за регуляцию процессов сна и бодрствования [5]. Например, СХЯ имеет прямые связи с суправентрикулярной областью, преоптической областью, дорсомедиальными отделами гипоталамуса, дугообразным и паравентрикулярным ядрами [4].
Известно, что трансплантация СХЯ восстанавливает нарушенные циркадианные ритмы у животных, у которых собственные СХЯ были удалены. В экспериментах с изоляцией трансплантата СХЯ полимерной капсулой для ограничения роста нервных отростков и образования связей с другими отделами мозга доказано существование не только нервных, но и гуморальных путей регуляции циркадианных ритмов [5]. В СХЯ синтезируются сигнальные молекулы, такие как аргинин-вазопрессин, вазоактивный интестинальный пептид, кардиотропин-подобный цитокин, прокинетин 2, эпидермальный фактор роста и трансформирующий фактор роста альфа [1, 4].
Одним из основных гормонов-регуляторов циркадианных ритмов является мелатонин, секретируемый во многих тканях организма, включая сетчатку и желудочно-кишечный тракт. Однако основным источником секреции мелатонина остается шишковидная железа [6]. Мелатонин – одно из звеньев процесса фоторегулировки: в течение дня свет, попадающий на сетчатку, активирует ее светочувствительные ганглионарные клетки, информация от которых передается через ретиногипоталамический тракт и далее – в СХЯ. Сигналы из СХЯ передаются в паравентрикулярное ядро гипоталамуса, после чего в составе интермедиолатерального столба спинного мозга доходят до верхнего шейного ганглия. Симпатические постганглионарные норадренергические волокна иннервируют мелатонин-секретирующие клетки в эпифизе. Норадреналин действует на постсинаптические бета-1- и альфа-1-адренорецепторы в клетках эпифиза, которые запускают синтез мелатонина. Возбуждение СХЯ под действием света вызывает не активацию, а торможение нейронов верхнего шейного узла. Соответственно они уменьшают выброс норадреналина, а эпифиз в ответ на это снижает секрецию мелатонина [7]. Таким образом, в ночное время секреция мелатонина усиливается, днем уменьшается (рис. 1) [6].
У новорожденных шишковидная железа не функционирует в полной мере, и необходимый мелатонин они получают с материнским молоком. Не случайно его замена искусственными смесями способна приводить к нарушениям циркадианных ритмов и сна [6]. На протяжении первых лет жизни пиковые концентрации мелатонина увеличиваются и достигают максимума к двум – четырем годам, после чего начинают снижаться и к моменту полового созревания выходят на плато. По окончании полового созревания секреция мелатонина продолжает ежегодно уменьшаться [8]. С возрастом уменьшается как базальная, так и пиковая концентрация мелатонина: сглаживается суточная кривая секреции мелатонина и снижается пик ночной секреции.
В ряде экспериментов на животных продемонстрированы антиоксидантные свойства мелатонина. Его добавление в рацион крыс приводило к увеличению продолжительности жизни и уровня тестостерона у самцов [9, 10].
В исследовании V.A. Lesnikov и W. Pierpaoli трансплантация шишковидной железы от молодых к более старым особям увеличивала продолжительность их жизни на 42% и, наоборот, трансплантация эпифиза более старых особей молодым снижала ее на 29% [11].
На фоне применения мелатонина у стареющих мышей увеличивалась не только продолжительность жизни, но и объем тимуса, надпочечников и яичек, что сопровождалось повышением уровня тестостерона и гормонов щитовидной железы в крови [12].
В ряде исследований мелатонин продемонстрировал нейропротективный эффект при нейродегенеративных заболеваниях. Мелатонин уменьшает токсичность бета-амилоида и предотвращает гибель клеток в экспериментальных моделях болезни Альцгеймера (БА), а также уменьшает окислительный стресс в моделях болезни Паркинсона (БП) [6].
С учетом антиоксидантных свойств мелатонина возрастзависимое снижение секреции может быть обусловлено активацией процессов окислительного стресса и повышением риска заболеваемости нейродегенеративными заболеваниями. Таким образом, снижение синтеза мелатонина, вероятно, играет не последнюю роль в процессах старения [9].
Молекулярная основа регуляции циркадианных ритмов обеспечивается часовыми генами, работа которых осуществляется по принципу петель положительной и отрицательной обратной связи. Накопившиеся в течение дня белки BMAL1 и CLOCK образуют комплекс BMAL1/CLOCK. Димер BMAL1/CLOCK активирует транскрипцию генов PER (PER1, PER2, PER3) и CRY (CRY1, CRY2). Синтезированные белки PER и CRY также формируют димер PER/CRY, действующий по принципу отрицательной обратной связи. PER/CRY перемещается в ядро клетки и ингибирует активность комплекса BMAL1/CLOCK, что приводит к снижению экспрессии белков PER и CRY. В течение ночи комплекс PER/CRY разрушается, и цикл начинается заново (рис. 2). Весь цикл занимает около 24 часов [2]. Другой часовой ген, участвующий в регуляции данного цикла, – REV-ERB-альфа. Комплекс BMAL1/CLOCK активирует транскрипцию гена, что приводит к накоплению в клетке белка REV-ERB-альфа. Белок REV-ERB-альфа в свою очередь ингибирует транскрипцию гена BMAL1 и предположительно генов CLOCK и CRY1.
Нарушения циркадианных ритмов при болезни Паркинсона
Нарушения циркадианных ритмов, а также нарушения сна и бодрствования встречаются у 75% пациентов с БП [2] и наряду с другими немоторными симптомами опережают моторные проявления болезни на несколько лет.
Известный феномен БП – моторные флуктуации, которые обычно возникают на поздних стадиях заболевания на фоне терапии леводопой. Однако моторные проявления БП могут зависеть не только от приема дофаминергических препаратов, но и от времени суток. Как известно, при использовании одинаковых доз леводопы пациенты чувствуют себя в послеобеденное и вечернее время хуже, чем в первой половине дня.
U. Bonuccelli и соавт. оценивали гипокинезию, тремор и ходьбу, а также метаболизм леводопы в трех группах пациентов с БП: с недавно диагностированной БП, на развернутой стадии БП без моторных флуктуаций и с БП и моторными флуктуациями [13]. Все пациенты получали стандартные дозы леводопы/карбидопы в 08.00, 12.00 и 16.00 часов. Результаты показали, что у больных на ранних стадиях заболевания отсутствуют выраженные колебания моторных симптомов в течение дня. На развернутых стадиях отмечается прогрессирующее ухудшение симптомов во второй половине дня без существенных изменений фармакокинетики леводопы. У больных наблюдается спонтанное улучшение симптомов утром после сна без дополнительного приема препаратов, которое длится от нескольких минут до нескольких часов и напоминает феномен при дофа-зависимой дистонии.
Суточные флуктуации характерны и для немоторных симптомов, в том числе вегетативных, поведенческих, когнитивных [13, 14]. Нарушения суточного профиля артериального давления и вариабельности сердечного ритма возникают на ранних стадиях заболевания. Согласно результатам ряда исследований, у пациентов с БП изменяется циркадианный паттерн колебаний артериального давления с увеличением его вариабельности, ортостатической гипотензией и гипотензией после еды и недостаточным снижением в ночное время. При холтеровском мониторировании определяется снижение вегетативной регуляции в течение дня с уменьшением вариабельности сердечного ритма и исчезновением утреннего пика [15].
При проведении актиграфии у пациентов с БП наблюдается изменение профиля суточной физической активности за счет снижения физиологических пиков активности и периодов повышенной активности в ночное время по сравнению с группой контроля [16].
Показано также, что дезорганизация циркадианного паттерна физической активности усиливается с течением заболевания [13]. Известно, что у больных БП уплощена кривая суточной секреции мелатонина и смещен ночной пик выделения мелатонина. С течением заболевания эти проявления усиливаются [2]. У пациентов с БП имеют место и другие нарушения функций, контроль над которыми осуществляет СХЯ. В отличие от пациентов с БА и пациентов контрольной группы у пациентов с БП помимо базальной гиперкортизолемии уплощена кривая суточной экскреции кортизола [17]. При БП нарушается суточный профиль образования и выделения мочи. В норме максимальная экскреция мочи отмечается в послеобеденное время, минимальная – в полночь [18]. Однако у пациентов с БП в дневное время выделяется только 43% объема мочи, пик экскреции в ночное время повышается до 57%. Наконец, у пациентов с БП отмечаются флуктуации цветовосприятия в течение суток с ухудшением цветочувствительности сетчатки в послеобеденное время [19].
Нарушения циркадианных ритмов при болезни Альцгеймера
Нарушения циркадианных ритмов, нарушения сна и бодрствования, такие как фрагментация сна, повышенная дневная сонливость и императивные засыпания, встречаются не менее чем у 30–50% пациентов с БА [20].
Клинически пациенты с БА демонстрируют десинхроноз в виде изменения ритмов суточной физической активности, сумеречный синдром – дезориентацию и психомоторное возбуждение в вечернее и ночное время (англ. sundowning) и флуктуации суточной температуры тела.
У пациентов с БА нарушен паттерн секреции мелатонина, снижено содержание рецепторов к мелатонину в СХЯ [21]. Более того, по данным патоморфологических исследований, уровень мелатонина в ликворе обратно коррелирует со степенью распространенности нейродегенеративного процесса при БА [22].
Патофизиология нарушений циркадианных ритмов при нейродегенеративных заболеваниях
Старение ассоциировано с изменениями в работе циркадианной системы. Уменьшение амплитуды и периода продолжительности циркадианных ритмов, увеличение вариабельности колебаний физиологических процессов в течение одного суточного цикла способствуют дестабилизации ежедневных ритмичных колебаний. Нарушение циркадианных ритмов приводит к изменению суточного профиля физической активности, нарушению ночного сна, повышенной дневной сонливости и изменению других физиологических функций.
Неудовлетворенность сном отмечают 25% мужчин и 50% женщин пожилого возраста. Более 25% пациентов регулярно или часто принимают снотворные средства. Нарушение сна – один из факторов, позволяющих оценить качество жизни пожилых. От бессонницы страдает примерно 30% людей старше 55 лет. У лиц старше 75 лет частота инсомнии удваивается по сравнению с лицами среднего возраста [23].
Нарушения циркадианных ритмов характерны для нейродегенеративных заболеваний, включая БП и БА. Среди механизмов, лежащих в основе их развития, выделяют:
Патологоанатомическим субстратом болезни служат нейроны, погибшие вследствие избыточного накопления в них белка альфа-синуклеина и формирования невритов и телец Леви. Измененные нейроны еще на ранних стадиях болезни обнаруживаются в ядрах ствола головного мозга, гипоталамусе и переднем мозге – центрах регуляции процессов сна и бодрствования и циркадианных ритмов [24]. В частности, поражаются норадренергические нейроны голубоватого пятна, холинергические нейроны педункулопонтинного ядра и переднего мозга, серотонинергические нейроны ядер шва, дофаминергические нейроны передних отделов покрышки среднего мозга и орексинергические нейроны латерального гипоталамуса [24]. Для нейродегенеративного процесса при БП характерны определенный паттерн и темп распространения с избирательным повреждением конкретных зон. Вовлечение ядер гипоталамуса типично для БП, в большей степени повреждаются туберомамиллярные ядра, а также латеральные и задние отделы. При этом тельца и невриты Леви длительное время не выявляются в СХЯ [25]. В действительности профиль секреции мелатонина у пациентов с БП de novo не отличается от контрольной группы, но по мере прогрессирования заболевания снижается его амплитуда [26].
N. Aziz и соавт. показали, что суточные колебания концентрации гормонов, паттерн секреции которых регулируется СХЯ, таких как гормон роста, тиреотропный гормон, пролактин, лептин, адипонектин и резистин, не изменяются у пациентов с БП de novo [27]. Напротив, при БА бета-амилоид и тау-протеин выявляются в СХЯ еще на преклинической стадии, равно как и изменения суточного профиля секреции мелатонина. Это говорит о раннем вовлечении СХЯ в патологический процесс [21], хотя нарушения циркадианных ритмов при БА развиваются позже и выражены меньше, чем при БП.
Обобщая результаты перечисленных исследований, можно предположить, что повреждение СХЯ не относится к ведущим причинам нарушения циркадианных ритмов при нейродегенеративных заболеваниях.
Возрастные изменения хрусталика, в том числе снижение его прозрачности, а также уменьшение размера зрачков приводят к снижению количества света, попадающего на сетчатку. Этот показатель у 45-летнего человека в два раза ниже, чем у десятилетнего ребенка, а в возрасте 95 лет уменьшается в десять раз [28]. У пациентов с БП и БА, по данным оптико-когерентной томографии, снижена толщина сетчатки, а гистологические исследования подтверждают последующую атрофию зрительных нервов [28].
По данным патологоанатомических исследований, у пациентов с БП альфа-синуклеин выявляется и в клетках сетчатки, в том числе светочувствительных ганглионарных клетках.
Таким образом, результаты исследований подтверждают, что нарушения процесса фоторегулировки играют ключевую роль в патогенезе циркадианной дисфункции при нейродегенеративных заболеваниях [2].
Дофаминергическая терапия – один из факторов, влияющих на циркадианные ритмы, сон и бодрствование. Наблюдение пациентов с БП de novo в течение года показало, что дофаминергическая терапия (леводопа или агонисты дофаминовых рецепторов) приводит к возникновению или усилению имеющейся повышенной дневной сонливости [29]. Известно, что дофаминергические препараты подавляют стадию сна с быстрыми движениями глаз и удлиняют ее латентность как у пациентов с БП, так и у здоровых добровольцев [30].
Механизм влияния дофаминергических средств на процессы сна и бодрствования сложен и зависит от дозы, времени приема препарата и типа рецепторов, на которые он действует. Как уже отмечалось, профиль секреции мелатонина у пациентов с БП de novo не отличается от такового в группе контроля. Тем не менее у пациентов, получающих леводопу, наблюдаются уплощение суточной кривой и сдвиг пика секреции на более ранние часы, что клинически проявляется синдромом ранней фазы сна [26].
Механизм, лежащий в основе изменения секреции мелатонина, при назначении дофаминергических средств не совсем ясен. Скорее всего, смещение фазы секреции мелатонина, индуцированной леводопой, – следствие прямого воздействия на нейроны СХЯ леводопы или образованного из нее дофамина. На это указывает наличие D1, D2-дофаминовых рецепторов в СХЯ, а также изменение экспрессии ряда часовых генов в СХЯ при введении нейролептиков [2].
Моторные и другие немоторные симптомы (моторные флуктуации, в частности ночной тремор и акинезия, синдром беспокойных ног, синдром обструктивного апноэ сна, никтурия) тоже могут приводить к нарушениям циркадианных ритмов, сна и бодрствования.
Установлено, что пациенты с нейродегенеративными заболеваниями демонстрируют десинхроноз на молекулярном уровне. В лейкоцитах крови пациентов с БП обнаруживается снижение уровня экспрессии гена Bmal1 в вечернее время по сравнению с контрольной группой [31]. Кроме того, уменьшается экспрессия гена BMAL2. Вместе с тем данные в отношении генов CLOCK и DEC1 не отличаются в группе БП и контрольной группе [32].
Изменения в работе часовых генов показаны и на животных моделях БП. У животных, которым вводили инъекции 6-гидроксидопамина, снижалась дневная экспрессия гена PER2 в клетках стриатума. В то же время в другом эксперименте на модели трансгенных мышей с повышенной экспрессией альфа-синуклеина экспрессия PER2 не изменялась [14].
В ротеноновой модели БП также выявлено снижение пиков экспрессии PER2, CRY1, CRY2 и BMAL1 и базального уровня экспрессии PER1, CRY1 и BMAL1 [33]. С целью регуляции ритма экспрессии генов применяли мелатонин, но его назначение сопровождалось восстановлением экспрессии только PER1 и не влияло на другие часовые гены, что свидетельствовало о различной чувствительности генов к мелатонину [32].
C. Liu и соавт. предположили, что нарушение экспрессии часовых генов при БП обусловлено изменением процессов метилирования ДНК [34]. Изменения метилирования ДНК (эпигенетический дрейф) наблюдаются и при нормальном старении, но они связаны с развитием ряда заболеваний и в большей степени выражены при нейродегенеративной патологии.
В крупном китайском исследовании по результатам генотипирования восьми часовых генов NPAS2, CLOCK, RORB, ARNTL, CRY1, CRY2, PER1 и NR1D1 в группе больных БП (1394 пациента) и здоровых добровольцев (n = 1342) были получены следующие данные. Вариант rs900147 гена ARNTL и rs2253820 гена PER1 был ассоциирован с БП. Более того, вариант rs900147 ARNTL чаще встречался у пациентов с дрожательной формой, чем с акинетико-ригидной, а вариант rs2253820 PER1 был ассоциирован с акинетико-ригидной формой [35].
При БА также нарушается экспрессия часовых генов в периферических клетках, в том числе BMAL1 [36].
Патоморфологические исследования выявили нарушение ритмичности транскрипции BMAL1, PER1 и CRY1 у пациентов на развернутых и преклинических стадиях БА [37].
D. Craig и соавт. показали, что полиморфизм в гене моноаминооксидазы А, усиливающий ее активность и снижающий содержание свободного серотонина – источника синтеза мелатонина, связан с нарушениями циркадианных ритмов [38].
Как уже отмечалось, нарушения регуляции хронобиологических процессов приводят к колебаниям симптомов в течение суток и нарушениям цикла «сон – бодрствование». Однако связь циркадианных ритмов и нейродегенеративного процесса может быть намного глубже, если учитывать их влияние на предрасположенность к развитию заболевания и течение процесса нейродегенерации. Нарушения циркадианных ритмов влекут за собой усиление процессов окислительного стресса, митохондриальной дисфункции и воспаления, что может способствовать ускорению нейродегенеративного процесса. Кроме того, одной из функций сна является удаление продуктов метаболизма нейромедиаторов. И нарушение этой функции тесно связано с повышением риска развития нейродегенеративных заболеваний.
Лечение нарушений циркадианных ритмов
В настоящее время существует несколько методик, направленных на усиление собственных циркадианных ритмов и их синхронизацию с окружающей средой. Одна из них – подкрепление процесса фоторегулировки за счет фототерапии. Снижение количества света, попадающего на сетчатку, вследствие возрастных изменений тканей глаза и социальных факторов (уменьшение времени, проводимого вне помещения), равно как и снижение числа светочувствительных ганглионарных клеток, приводит к тому, что уменьшается поступление афферентных сигналов из окружающей среды в СХЯ. Результаты исследований показали эффективность фототерапии при нарушениях сна, аффективных и когнитивных нарушениях у пожилых.
Известно несколько вариантов применения фототерапии. Классический предполагает использование лампы искусственного освещения мощностью свыше 1000 люкс, устанавливаемой на уровне глаз на расстоянии метра от пациента. Более естественный вариант фототерапии предполагает создание в помещении переменного уровня освещенности в зависимости от времени суток (англ. dawn-dusk simulation). Согласно данным множества исследований, фототерапия при БА способствует укреплению внутренних циркадианных ритмов в виде улучшения паттерна суточной физической активности, ночного сна, уменьшения вечерней ажитации и дневной сонливости [39]. Кроме того, при БП фототерапия улучшала циркадианные функции за счет снижения дневной сонливости и повышения физической активности в дневное время [40]. Основной недостаток фототерапии – кратковременный эффект (несколько недель после лечения) [36].
В условиях in vitro и экспериментах на моделях животных установлено, что мелатонин характеризуется антиоксидантными и нейропротективными свойствами, а также является основным гормоном-регулятором циркадианных ритмов [36].
Применение мелатонина у макак с MPTP-индуцированным паркинсонизмом, сопровождающимся фрагментацией сна и дневной сонливостью, приводило к удлинению ночного сна и повышению индекса эффективности сна [41].
Эффективность мелатонина при БП оценивали в двух плацебоконтролируемых рандомизированных двойных слепых исследованиях. В первом 40 пациентов с БП получали мелатонин в дозе 5 и 50 мг за 30 минут до сна в течение двух недель. По сравнению с плацебо мелатонин не только улучшал субъективную оценку сна, но и удлинял продолжительность ночного сна по данным актиграфии [42]. В другом исследовании 18 пациентов с БП принимали 3 мг мелатонина или плацебо за час до сна. На фоне лечения отмечалось значительное субъективное улучшение качества сна. Питтсбургский индекс качества сна в основной группе был в два раза ниже, чем в группе плацебо, что, однако, не отразилось на результатах полисомнографии [43].
В качестве синтетического аналога мелатонина, доступного для применения в Российской Федерации, используется препарат Мелаксен («Юнифарм Инк», США). В отечественном исследовании 30 пациентов с БП получали этот препарат в дозе 3 мг в течение шести недель. На фоне его применения отмечалось улучшение показателей сна больных (оценка по Питтсбургскому индексу качества сна), а также выраженности дневной сонливости и депрессивных проявлений [44].
Мелатонин продемонстрировал эффективность и у больных БП с расстройствами поведения в фазе сна с быстрыми движениями глаз, уровень доказательности B [45]. В исследовании Е.А. Ляшенко и соавт. (2015) на фоне применения мелатонина в дозе 3–6 мг в течение четырех недель у 60 больных БП в 84% случаев отмечалось уменьшение выраженности этого расстройства сна, а также показателей дневной сонливости, тревоги и депрессии [46].
У пациентов с БА мелатонин увеличивал продолжительность сна, индекс его эффективности и сокращал время засыпания по данным полисомнографии [36].
Еще один фактор регуляции циркадианных ритмов наряду со светом, мелатонином и другими гормонами – физическая нагрузка. Физические упражнения влияют на работу СХЯ. Механизм действия сложен и затрагивает ядра ствола, таламуса и гипоталамуса. Физические упражнения восстанавливают нарушенные циркадианные ритмы у мышей и изменяют профиль экспрессии часового гена PER2 в периферических клетках. У здоровых добровольцев физические упражнения смещают фазу сна вперед и при выполнении вечером приводят к симпатикотонии в ночное время, при выполнении утром – к ваготонии [47].
В рандомизированном клиническом исследовании изучали эффективность комплекса физических упражнений по 60 минут три раза в неделю у 17 пациентов с БП в течение шести месяцев. У пациентов основной группы отмечались улучшение ночного сна и повышение уровня повседневной активности по сравнению с контрольной группой, пациенты которой не выполняли физических упражнений. В другом исследовании оценивали эффект комбинированных аэробных и гимнастических упражнений, проводимых в течение трех месяцев, у 20 пациентов с БП. По окончании курса наблюдалось улучшение качества жизни и качества сна, уровня повседневной активности [48]. Аналогичные результаты продемонстрировали и пациенты с БА при выполнении мультимодального комплекса физических упражнений по 60 минут три раза в неделю в течение шести месяцев. При сравнении с группой контроля после курса лечения у пациентов основной группы отмечалось улучшение сна и уровня физической активности в дневное время [49].
Прием пищи – еще один фактор синхронизации внутреннего циркадианного ритма с 24-часовым суточным периодом. У пациентов с БА и другими деменциями измененный паттерн приема пищи: максимальное потребление пищи приходится на утро, а количество потребляемой пищи в послеобеденное и вечернее время ниже, чем в контрольной группе [36]. На экспериментальных моделях нейродегенеративных заболеваний показано, что соблюдение строгого режима приема пищи восстанавливает фазы локомоторной активности и нарушенную экспрессию часовых генов в печени грызунов. В одном из исследований прием пищи грызунами только в ночное время замедлял прогрессирование заболевания и приводил к нормализации суточных колебаний температуры тела [36].
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.