Введение
В мире около 48,5 млн бесплодных пар. Доля мужского фактора в бесплодном браке отличается в разных странах и колеблется от 20 до 70% в зависимости от региона проживания. Процент бесплодных мужчин составляет от 2,5 до 12% [1].
Мужское бесплодие может быть вызвано различными факторами: генетическими аномалиями, гипогонадизмом, крипторхизмом, варикоцеле, инфекциями, аутоиммунными и системными заболеваниями, раком яичек и др. Однако в 30–40% случаев этиологию нарушений сперматогенеза установить не удается и состояние расценивается как идиопатическая олигоастенотератозооспермия.
Одной из установленных причин снижения фертильности спермы является окислительный стресс. Известно, что различные параметры спермы, такие как количество, подвижность и морфология сперматозоидов, чувствительны к действию свободных радикалов [2]. Активные формы кислорода (АФК) в норме образуют сами сперматозоиды, и АФК играют важную физиологическую роль в механизмах капацитации и акросомной реакции, то есть необходимы для проникновения сперматозоида в яйцеклетку. Наряду с образованием АФК непрерывно происходит их деактивация антиоксидантами, содержащимися в семенной плазме, что обеспечивает баланс между оксидантной и антиоксидантной системами в семявыносящих путях. Нарушение баланса неизбежно ведет к ухудшению фертильности.
Сперматозоиды более чувствительны к окислительному стрессу, чем другие клетки, вследствие маленького объема цитоплазмы, низкой концентрации антиоксидантов и большого количества полиненасыщенных жирных кислот, легко подвергающихся перекисному окислению. Кроме того, структура сперматозоидов такова, что антиоксидантные энзимы оказываются неспособными защитить клеточную мембрану на уровне хвоста и акросомы [2].
Инкубация сперматозоидов под высоким давлением кислорода приводит к уменьшению их количества и подвижности, добавление к культуре клеток каталазы предотвращает данный эффект [3]. Обладая высокой окислительной способностью, АФК вызывают повреждение различных компонентов клеточной стенки и органелл сперматозоида, особенно липидных, белковых молекул, а также ДНК. Среди наиболее значимых негативных эффектов взаимодействия АФК с половыми клетками – перекисное окисление липидов и повреждение ДНК [4]. Исследования генетического материала сперматозоидов у пациентов с тератозооспермией доказывают высокий уровень фрагментации ДНК на фоне повышенного содержания АФК в образцах эякулята [5]. Вызванное окислительным стрессом нарушение структуры ДНК у бесплодных мужчин встречается в 100 раз чаще, чем у фертильных. Кроме того, в ряде исследований продемонстрировано, что уровень АФК повышен в эякуляте мужчин, чьи партнерши имели в анамнезе выкидыши [6].
Факторы, индуцирующие окислительный стресс и негативно влияющие на сперматогенез
Целый ряд факторов может отрицательно сказываться на сперматогенезе, вызывая окислительный стресс.
Воспаление
Источниками образования АФК в сперме, кроме самих сперматозоидов, являются лейкоциты [7]. Лейкоцитоспермия и значительная доля сперматозоидов с фрагментированной ДНК часто наблюдаются одновременно [8]. В условиях хронического воспаления активированные лейкоциты начинают вырабатывать АФК, концентрации которых могут в 1000 раз превышать количество свободных радикалов, продуцируемых самими сперматозоидами [9]. Назначение антибактериальной терапии даже при незначительной лейкоцитоспермии (0,2–1/106 в 1 мл) существенно повышало вероятность наступления спонтанной беременности [10].
Инфекция также приводит к существенному снижению выработки тестостерона и угнетению сперматогенеза в яичках. J.A. Allen и соавт. доказали, что в основе этого процесса лежит окислительный стресс. У мышей воспаление, индуцированное интраперитонеальным введением липополисахарида, повышает уровень АФК, что вызывает стимуляцию перекисного окисления в мембранах клеток Лейдига и нарушает стероидогенез [11].
Перекрут яичка
Перекрут яичка – редкое заболевание, встречающееся преимущественно в детском и пубертатном периоде и приводящее к ухудшению качества спермы в зрелом возрасте у 35% пациентов. Нарушение кровоснабжения вызывает в ткани яичка усиленное продуцирование оксида азота и пероксида водорода, перекисное окисление липидов, снижение концентрации антиоксидантов и стимулирует апоптоз [12]. Даже короткий, менее трех часов, период ишемии сопровождается окислительным стрессом, уменьшением уровня глутатиона и нарушением морфологии сперматозоидов. Если перекрут не ликвидирован в течение трех-четырех часов, это может привести к постепенному уменьшению яичка в размерах [3]. Повреждение тестикулярной ткани при перекруте яичка может быть сведено к минимуму за счет перорального приема антиоксидантов, в частности селена, ресвератрола, L-карнитина, фенилэтилового эфира кофеиновой кислоты, экстракта чеснока (Allium sativum) и др. [13].
Повышение температуры в мошонке
Любые факторы, вызывающие повышение температуры яичек, ассоциированы с окислительным стрессом. Кроме того, высокая температура деактивирует антиоксидантные ферменты – каталазу и супероксиддисмутазу. Культивирование созревающих сперматозоидов при повышенной температуре сопровождается нарастанием концентрации АФК и усилением апоптоза. Добавление каталазы предотвращает клеточную гибель за счет снижения уровня пероксида водорода [14].
Варикоцеле
В ряде исследований продемонстрировано, что варикоцеле вызывает окислительный стресс и ассоциируется с увеличенной продукцией АФК сперматозоидами, высоким уровнем фрагментации ДНК и низким содержанием антиоксидантов в сперме [15, 16].
Диабет
В экспериментах на животных моделях доказано, что диабет приводит к окислительному стрессу в яичках за счет увеличения продукции АФК. Повреждение генетического материала сперматозоидов в условиях окислительного стресса влечет за собой снижение фертильности и увеличивает частоту гибели плода. Уровень фрагментации ДНК сперматозоидов у мужчин с сахарным диабетом выше, чем у их сверстников без диабета [17].
Гипертиреоз
Окислительный стресс в яичках на фоне гипертиреоза связан с усилением митохондриальной активности и одновременным высвобождением электронов из митохондриальной электрон-транспортной цепи вследствие усиленной выработке тироксина [18]. Клинические исследования показали, что повышение уровня гормонов щитовидной железы сопровождается ухудшением качества спермы, особенно снижением подвижности сперматозоидов [19]. Осложнения, обусловленные гипертиреоз-индуцированным окислительным стрессом, могут быть нивелированы приемом антиоксидантов, например мелатонина [20].
Токсины
Токсины, содержащиеся в окружающей среде, могут провоцировать окислительный стресс и вызывать нарушения сперматогенеза. В эксперименте на мышах доказано, что пестициды, в частности гексахлорциклогексан, значительно увеличивают продукцию АФК сперматозоидами, приводят к поражению зародышевых клеток и индуцируют апоптоз [21]. Аналогичным действием обладают промышленные загрязнители, например нонилфенол и 1,3-динитробензол. Метоксиэтанол, использующийся в качестве растворителя в составе красок, эмалей, масел и тормозной жидкости, может стать причиной развития в яичках окислительного стресса и привести к атрофии [22].
Высокие концентрации тяжелых металлов (например, кадмия и железа) также индуцируют окислительный стресс в ткани яичек [23].
Курение стимулирует избыточное образование АФК во всех тканях организма, в том числе яичках, что в сочетании с прямым токсическим действием на сперматогенез ведет к мужскому бесплодию [24].
Ионизирующая радиация
Яички чувствительны к рентгеновскому излучению, в том числе из-за того, что облучение ассоциировано с окислительным стрессом. Замечено, что не все клетки в тестикулярной ткани одинаково восприимчивы к действию рентгеновских лучей. Наиболее устойчивы клетки Сертоли и Лейдига за счет более высокой концентрации антиоксидантов [25].
Возраст
Согласно результатам многочисленных исследований, по мере старения в организме вырабатывается все меньше ферментных и неферментных антиоксидантов, что усиливает окислительный стресс, в том числе в яичках. Качество и количество сперматозоидов с возрастом снижаются [26].
Борьба с окислительным стрессом
АФК, продуцируемые лейкоцитами и сперматозоидами, оказывают фатальное действие на функцию спермиев у бесплодных мужчин. Поэтому АФК, образующиеся в сперме, должны постоянно инактивироваться, чтобы их уровень оставался низким, но в то же время достаточным для нормального функционирования клеток.
Антиоксиданты могут быть эндогенными и экзогенными. Эндогенные подразделяются на ферментные, такие как каталаза, супероксиддисмутаза, глутатионпероксидаза, и неферментные, например глутатион, витамин Е, витамин А, витамин С, таурин, коэнзим Q10 и L-карнитин. Экзогенные антиоксиданты (витамины Е и С, каротиноиды) поступают в организм с пищей [27].
Применение пероральных антиоксидантов выраженно снижает индекс фрагментации ДНК, в том числе в условиях окислительного стресса. Если окислительный стресс участвует в этиологии повреждений ДНК, то антиоксидантная терапия должна быть частью лечения [28].
В Кохрановский обзор (2014) были включены 48 исследований с участием 4179 субфертильных мужчин. Сравнивалась эффективность приема монокомпонентных или комбинированных антиоксидантов с плацебо, отсутствием лечения или применением другого антиоксиданта. Ожидаемая частота наступления клинической беременности партнерш субфертильных мужчин, которые не принимали антиоксиданты, составила шесть случаев из 100 по сравнению с 11–28 случаями из 100 среди мужчин, принимавших антиоксиданты. Ожидаемый уровень живорождений для субфертильных мужчин в группе плацебо или без терапии составил пять из 100 по сравнению с мужчинами, принимавшими антиоксиданты, – 10–31 из 100 [29].
В антиоксидантной терапии нуждаются мужчины в парах, не только планирующих естественную беременность, но и готовящихся к зачатию с использованием вспомогательных репродуктивных технологий. Это связано с тем, что АФК, присутствующие в эякуляте в естественных условиях, становятся причиной окислительного стресса при применении методов вспомогательных репродуктивных технологий. Усиленное образование АФК наблюдается при криоконсервации и оттаивании эякулята, воздействии факторов внешней и культуральной среды. Инкубационный период тоже способствует накоплению свободных радикалов [30]. Концентрация кислорода в культуральной среде до 20 раз выше таковой в женском репродуктивном тракте. Повышенные уровни АФК ассоциируются с нарушениями развития бластоцисты и частотой оплодотворений [31].
M.A. Baker и соавт. выявили отрицательную корреляцию между повышенным уровнем АФК в сперме и частотой оплодотворений, качеством эмбрионов и достижением клинических беременностей [32].
К. Tremellen и соавт. обнаружили достоверную связь между приемом антиоксидантов и частотой живорождений в парах, проходящих программы экстракорпорального оплодотворения/интрацитоплазматической инъекции сперматозоида в яйцеклетку [33].
В настоящее время при лечении идиопатического мужского бесплодия преимущество отдается комбинациям пероральных антиоксидантов, что позволяет усилить клинический эффект.
P. Gharagozloo и соавт. обнаружили, что комбинация L-карнитина (500 мг), фолиевой кислоты (450 мкг), витамина С (60 мг), ликопина (10 мг), селена (55 мкг), витамина Е (200 мг), цинка (10 мг) значимо уменьшает уровень 8-гидроксидеоксигуанозина, маркера повреждения ДНК, в сперматозоидах мышей [4].
Влияние комбинированного приема витамина С (100 мг), витамина Е (100 мг), фолиевой кислоты (500 мкг), цинка (25 мг), селена (100 мкг), N-ацетилцистеина (50 мг), L-карнитина (300 мг), цитруллина (300 мг), ликопина (4 мг) и коэнзима Q10 (15 мг) на качество спермы изучено на 147 пациентах. Было продемонстрировано значимое увеличение концентрации, подвижности и улучшение морфологии сперматозоидов [34].
P. Gopinath и соавт. в плацебоконтролируемом исследовании доказали эффективность и безопасность применения у мужчин с астенотератозооспермией комбинированного антиоксидантного препарата (в его состав входили 50 мг коэнзима Q10, 500 мг L-карнитина, 2,5 мг ликопина и 12,5 мг цинка) [35].
K. Tremellen и соавт. провели проспективное рандомизированное плацебоконтролируемое двойное слепое исследование на 60 парах с мужским фактором бесплодия. Мужчины принимали один раз в сутки капсулу комбинированного препарата, содержащего 400 МЕ витамина Е, 50 мг витамина С, 6 мг ликопина, 25 мг цинка, 25 мкг селена, 5 мг фолиевой кислоты и 1000 мг чеснока, либо плацебо. В группе, получавшей антиоксидантный комплекс, клиническая беременность была достигнута в 38,5% случаев, в группе плацебо – в 16% случаев [33].
Одним из наиболее хорошо изученных комплексных антиоксидантов на российском рынке является АндроДоз. К настоящему времени накоплен большой отечественный опыт его использования в лечении идиопатического мужского бесплодия: завершено 11 опытов применения с участием 696 пациентов.
В российском многоцентровом открытом исследовании через три месяца от начала приема АндроДоза отмечено статистически значимое повышение общего количества активно подвижных сперматозоидов (А + В). По окончании терапии количество патологических форм сперматозоидов снизилось на 26,32% (р = 0,0001), причем данный показатель нормализовался у 100% пациентов с исходным критическим увеличением (> 96% патологических форм). По завершении курса 87,6% пациентов расценили эффект от проведенной терапии как хороший и выраженный [36].
Согласно результатам, полученным Е.С. Дендеберовым и И.В. Виноградовым (2014), прием АндроДоза в течение трех месяцев пациентами с идиопатической патоспермией приводил к увеличению объема эякулята на 45,7%, концентрации сперматозоидов на 18,5%, общей их подвижности на 33,7%, активной подвижности на 38,4% и количества морфологически нормальных форм на 50% [37].
Назначение АндроДоза мужчинам с идиопатической патоспермией, по данным С.Д. Дорофеева и соавт. (2015), позволило через полтора месяца приема достичь увеличения объема эякулята, концентрации сперматозоидов, количества подвижных и морфологически нормальных форм сперматозоидов [38].
А.Ю. Цуканов (2016) показал, что применение комплекса АндроДоз у здоровых мужчин оказало значимый положительный эффект на показатели эякулята, повышая вероятность зачатия. В сравнении с контрольной группой выявлены статистически значимые различия по следующим показателям: объем эякулята, концентрация сперматозоидов, доли жизнеспособных сперматозоидов и сперматозоидов с поступательным движением, а также количество патологических форм сперматозоидов [39].
В исследовании В.А. Божедомова и соавт. (2016) через полтора месяца приема комплекса АндроДоз у 2/3 пациентов наблюдалось значимое уменьшение повреждения ДНК сперматозоидов. Статистически значимо уменьшилась выраженность окислительного стресса, о чем свидетельствовало уменьшение продукции АФК отмытыми сперматозоидами в 70% случаев (p < 0,05) в среднем по группе более чем в два раза [40]. Высокая эффективность достигнута за счет оптимального подбора компонентов, входящих в состав комплекса.
L-карнитин. Антиоксидант, который играет решающую роль в метаболизме жиров в качестве кофермента. Витамин содержится почти во всех клетках организма, отвечает за транспорт жирных кислот в митохондрии и использование их в качестве источника энергии. Основные пищевые источники карнитина – мясо, рыба, молоко и молочные продукты. Концентрация L-карнитина в придатках яичек в 2000 раз превышает его концентрацию в плазме крови [41]. Карнитин повышает клеточную энергию в митохондриях, защищает мембраны сперматозоидов и ДНК от индуцированного АФК апоптоза [42].
S.D. Haseen Ahmed и соавт. установили, что содержание левокарнитина в сперме бесплодных мужчин ниже такового у мужчин контрольной группы. Кроме того, обнаружена выраженная корреляция между уровнем карнитина и количеством, подвижностью и концентрацией сперматозоидов [43].
Как продемонстрировали A. Lenzi и соавт. в двойном слепом плацебоконтролируемом исследовании, прием 2 г L-карнитина и 1 г ацетил-L-карнитина в сутки в течение шести месяцев позволил добиться значимого улучшения всех параметров спермограммы [44].
L-аргинин. Биологически активный изомер условно незаменимой аминокислоты аргинина. Белки семенной жидкости почти на 80% состоят из L-аргинина, и его дефицит может приводить к нарушению сперматогенеза и бесплодию. L-аргинин усиливает сперматогенез, участвует в упаковке ДНК сперматозоидов [45]. Кроме того, L-аргинин играет роль в регуляции эректильной функции. Будучи предшественником оксида азота, поддерживает хороший ток крови в мужских половых органах, способствует нормализации эрекции [46].
Коэнзим Q10 (убихинон). Неферментный антиоксидант, защищающий мембраны клеток от перекисного окисления липидов. Содержится в мясе, соевом масле, сардинах, арахисе. Присутствует в семенной плазме, выполняя важные метаболическую и антиоксидантную функции. Показана прямая корреляция концентрации коэнзима Q10 и параметров эякулята. Концентрация коэнзима Q10 снижена при азооспермии и варикоцеле [47].
В нескольких крупных плацебоконтролируемых исследованиях продемонстрировано, что коэнзим Q10 при приеме 200–300 мг/сут в течение 26 недель способствовал увеличению количества, качества и подвижности сперматозоидов [48].
L-карнозин. Водорастворимый антиоксидант, который усиливает эффект жирорастворимых антиоксидантов, например альфа-токоферола [49]. В эксперименте нейтрализует тяжелые металлы, предотвращает отравление организма различными токсинами [50]. Защищает репродуктивную систему от вредных воздействий, стимулирует сперматогенез и улучшает подвижность сперматозоидов. Благодаря антиапоптозному эффекту предотвращает дисфункцию яичек, вызванную гамма-облучением, восстанавливая сперматогенез [51].
Солодка голая (Glycyrrhiza glabra). Корни и корневища солодки содержат глицирризиновую кислоту и флавоноиды, оказывающие противовирусное, противогрибковое, противовоспалительное, противоаллергическое, иммуномодулирующее, тонизирующее действие [52]. Глицирризиновая кислота подавляет активность тромбина, в том числе присутствующего в сперме и участвующего в процессе ее сгущения, обладает муколитическим действием и обеспечивает разжижение и увеличение объема эякулята [53]. Благодаря мощному антиоксидантному эффекту способствует снижению фрагментации ДНК клеток [54].
Цинк (Zn). Играет ключевую роль в процессах развития яичек, стероидогенезе, синтезе и секреции лютеинизирующего и фолликулостимулирующего гормонов, формировании и созревании сперматозоидов, акросомной реакции и оплодотворении. Цинк встраивается в хроматин сперматозоида во время сперматогенеза на начальной стадии компактизации ядра. Одно из первых проявлений дефицита цинка – блокирование созревания сперматозоидов еще до стадии элонгированных сперматид [55].
Хроматин свежеэякулированных сперматозоидов стабилизируется при помощи солевых мостиков, в которых цинк связывает тиольные группы протаминов и гистидин, предотвращая их окисление. Этот тип солевого мостика противодействует деконденсации хроматина под воздействием среды в пробирке. Частичный дефицит или преждевременный вывод цинка из эякулята одновременно с частичной деконденсацией хроматина «оголяет» ДНК перед повреждающими факторами [56].
По данным Всемирной организации здравоохранения, около трети населения планеты испытывает дефицит цинка, что обусловливает потребность в его пероральном приеме. Лактат цинка, содержащийся в добавке АндроДоз, – молочнокислая форма цинка, наиболее легко усваиваемая в пищеварительном тракте.
Витамин Е (токоферол). Предотвращает повреждение клеточных стенок, нейтрализуя пероксид водорода и другие АФК. Необходим для роста новых клеток, нормального функционирования иммунной системы. Доказано, что прием витамина Е снижает коэффициент окислительного стресса в ткани яичек, повышает подвижность сперматозоидов и положительно влияет на их способность проникать в яйцеклетку [57]. Витамин E проявляет синергизм с ретинолом и селеном [58].
Витамин А (ретинол). Важное звено антиоксидантной системы, защищает клеточные мембраны от окисления, влияет на синтез белков и поддерживает репродуктивную функцию, участвует в дифференцировке половых клеток. Витамин А в семенной жидкости нужен для нормального сперматогенеза и поддержания подвижности сперматозоидов. Кроме того, витамин А улучшает усвоение цинка и усиливает его антиоксидантное действие [59].
Селен (Se). В настоящее время практически все антиоксидантные комплексы для повышения мужской фертильности содержат селен, что оправдано клиническими исследованиями. Селен важен для метаболизма тестостерона и входит в состав митохондриальной капсулы сперматозоида. Применение селена субфертильными пациентами статистически значимо повышало подвижность сперматозоидов [60]. Селен также препятствует окислительному повреждению ДНК сперматозоидов. В эксперименте на мышиной модели частота экстракорпорального оплодотворения была на 67% ниже при использовании спермы с алиментарным дефицитом селена. Авторы пришли к выводу, что дефицит этого микроэлемента связан с индуцированием окислительного стресса и дальнейшей конденсацией хроматина [61]. Получены экспериментальные данные о том, что дефицит селена по отцовской линии во время зачатия может ассоциироваться с пролиферацией клеток и повышенным риском рака молочной железы у женского потомства. Комплекс АндроДоз содержит селен в органической форме (Витасил-Se (селен)-С), что обеспечивает постепенное его всасывание в кишечнике без резких подъемов концентрации в крови и риска передозировки [62].
Возможность совмещения жирорастворимых и водорастворимых антиоксидантных компонентов в составе АндроДоза обеспечена технологией микрокапсулирования Actielease, которая применяется в производстве жирорастворимых субстанций АндроДоза (коэнзима Q10, витаминов Е и А). Технология позволяет разделить активные ингредиенты на микроскопические наночастицы, что в сочетании с особой полисахаридной матрицей обеспечивает водорастворимость, стабильность и оптимальную концентрацию компонентов состава АндроДоза, а также равномерное замедленное высвобождение активных веществ в организме [63].
Опасность переизбытка антиоксидантов
АФК в физиологических концентрациях играют важную роль, участвуя в процессах капацитации, гиперактивации, акросомной реакции и взаимодействия с ооцитом. В связи с этим недостаточное количество АФК на фоне переизбытка антиоксидантов также может стать причиной дисбаланса и снижения фертильности эякулята.
Инкубация эмбриональных клеток при низких концентрациях H2O2 стимулирует пролиферацию, в то время как воздействие более высоких концентраций приводит к дифференциации или апоптозу [64].
Несбалансированные антиоксидантные комплексы и применение антиоксидантов в дозах, превышающих физиологические, могут вызвать чрезмерную элиминацию свободных радикалов, что негативно скажется на процессе созревания сперматозоидов и оплодотворении. Например, прием витамина С длительно или в высоких дозах весьма неоднозначно влияет на сперматогенез. Витамин С способен открыть все дисульфидные связи белков, способствуя их денатурации, что приведет к окислению мембран в фазах I и III сперматогенеза и неправильной упаковке ДНК [65].
Кроме того, следует избегать добавок с железом и медью, если не установлен выраженный дефицит этих элементов, поскольку они усиливают выработку свободных радикалов (реакции Габера – Вейса и Фентона) [66].
Селен в высоких концентрациях может вытеснять цинк и влиять на процессы метилирования ДНК, нарушая, таким образом, генетическую стабильность. Согласно G. Bleau и соавт., концентрация селена в семенной плазме должна быть в строгом диапазоне от 50 до 70 нг/мл. Переизбыток элемента приводит к уменьшению подвижности и более высокой частоте возникновения астенозооспермии с последующим ростом частоты выкидышей [67].
Заключение
Окислительный стресс – один из ведущих факторов в патогенезе олигоастенотератозооспермии. Использование сбалансированных антиоксидантных комплексов позволяет уменьшить негативные последствия повышенной секреции АФК и улучшить качество эякулята.
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.