Исследование электрофизиологических характеристик мозговой активности перехода от бодрствования ко сну, сопровождаемого поведенческой и когнитивной активностью, имеет определенную диагностическую ценность для оценки трудностей засыпания разной этиологии [1, 2]. Наряду с этим в клинической практике актуально определение уровня бдительности и связанных с ней ресурсов внимания при бессоннице и неврологических нарушениях [3].
Нейрофизиологические корреляты при засыпании хорошо изучены у здоровых субъектов и пациентов с патологией [2, 4]. Вместе с тем исследований с использованием деятельности в качестве теста, оценивающего состояние человека при переходе от бодрствования ко сну, немного. Это работы по изучению состояния монотонии, которое возникает при длительной однообразной работе и может приводить к эпизодам засыпания [5]. При выполнении испытуемыми задачи по логическому принятию решений из двух вариантов в состоянии депривации на основании синхронных записей функциональной магнитно-резонансной томографии (фМРТ) и электроэнцефалографии (ЭЭГ) показаны частые вторжения тета-ритма, связываемые с засыпанием, в картину биоэлектрической активности, которая характерна для выполняемой когнитивной задачи. Этот ритм был наиболее выражен в лобных и теменных отделах мозга [6]. В экспериментальной модели, исследующей процессы засыпания без воздействия внешними сенсорными стимулами, одновременно регистрировались ЭЭГ, характеристики дыхания и поведенческие данные (сила сдавливания мячика рукой, фиксация момента начала сна, когда испытуемый выронит его) [7]. Использование поведения, а именно постукиваний пальцем и нажатий на кнопку (теппинг-тест) для определения момента засыпания, предлагалось и ранее [8]. В нашей лаборатории для моделирования засыпания во время операторской деятельности проводились опыты с использованием психомоторного теста [9]. Ошибочная реализация заданий теста (в унимануальной, то есть с нажатиями на кнопку одной рукой, модификации), оцениваемая как дремотное состояние, сопровождалась ростом мощности тета-ритма на ЭЭГ. Эпизоды деятельности без ошибок, рассматриваемые как бодрствующее состояние, приводили к росту альфа-ритма [10]. Однако в данной работе больше внимания уделялось созданию статистической модели засыпания оператора, а не детальному исследованию нейрофизиологических коррелятов выполнения деятельности при переходе от бодрствования ко сну.
Цель нашего исследования – проанализировать, как сложная и простая фазы психомоторного теста (счет в уме, сопровождаемый синхронными нажатиями на кнопку, и только счет в уме соответственно) отражаются в биоэлектрической активности разных областей ее отведения в начале и конце засыпания. Задачи исследования – сравнить мощностные характеристики ЭЭГ в начале деятельности с ЭЭГ при первом паттерне психомоторной деятельности с ошибкой с последним паттерном деятельности, предшествовавшим эпизоду сна, а также сравнить характеристики ЭЭГ эпизодов деятельности с первой и последней ошибкой при засыпании.
Материал и методы
В исследовании участвовали 34 практически здоровых лица – студенты московских вузов (26 женщин и 8 мужчин, возраст от 19 до 22 лет). Они были ознакомлены с процедурой опыта и дали согласие на участие в нем. Исследование было одобрено этической комиссией Института высшей нервной деятельности и нейрофизиологии РАН (протокол № 2 от 3 июня 2019 г.) и соответствовало этическим нормам Хельсинкской декларации Всемирной медицинской ассоциации «Этические принципы проведения научных медицинских исследований с участием человека» с поправками 2000 г. Время эксперимента – с 13.00 до 16.00. Выполнение психомоторного теста с эпизодами сна – от 55 минут до 1 часа 10 минут. На протяжении всего опыта испытуемые находились в затемненном звукоизолирующем помещении в положении лежа на кушетке с закрытыми глазами. В течение 5 минут проводили запись ЭЭГ в состоянии спокойного бодрствования. С помощью унимануального (с нажатиями на кнопку одной рукой) психомоторного теста [9] получали ряд последовательных периодов засыпания и пробуждения. Испытуемые считали в уме от одного до десяти и синхронно нажимали закрепленную на указательном пальце кнопку большим пальцем правой руки (первая фаза теста). Далее они продолжали считать в уме от одного до десяти без нажатий (вторая фаза). Чередование счета с нажатиями и без нажатий продолжалось, пока испытуемые не засыпали. После эпизода сна и последующего самопроизвольного пробуждения они должны были возобновить выполнение заданий психомоторного теста с первой фазы. Испытуемых, которые не засыпали или засыпали и не просыпались до конца опыта, исключали из исследования.
В течение опыта с поверхности головы регистрировали ЭЭГ от 17 отведений, расположенных в соответствии со схемой 10–20% (F3, F4, F7, F8, Fz, C3, C4, Cz, T3, T4, P3, P4, Pz, T5, T6, O1, O2). Отведение монополярное, референтный электрод – объединенный ушной. Кроме того, записывали электроокулограмму (ЭОГ), миограмму (ЭМГ) и механограмму нажатий на кнопку. Регистрацию всех показателей проводили с помощью системы Neocortex-Pro (Neurobotics, Россия). Частота дискретизации – 250 Гц. Полоса пропускания частот – 0,5–70 Гц. ЭЭГ регистрировали с помощью шлема с хлорсеребряными электродами с сопротивлением, не превышающим 5 КОм.
После визуального анализа полисомнограмм и механограмм выделяли испытуемых, на ЭЭГ которых наблюдались периоды засыпания (n = 24). Для анализа выбирали 30-секундные отрезки записи ЭЭГ в трех ситуациях:
Для ситуации 3 выбирали отрезки, за которыми следовал эпизод сна не менее 1,5 минуты. Принадлежность участков ЭЭГ к периоду начала сна (sleeponset) оценивали визуально по стандартным критериям Американской академии медицины сна (AASM) [11]. Дополнительным критерием считали отсутствие на механограмме признаков нажатий на кнопку.
Для оценки мощностных характеристик биоэлектрической активности коры проводили непрерывное вейвлет-преобразование на основе «материнского» комплексного Morlet-вейвлета (Matlab 78.01, для скриптов использовались параметры, представленные в работе C. Tallon-Baudry и соавт. [12]). Карты распределения значений модуля коэффициента вейвлет-преобразования (КВП) строили в полосе 0,5–40 Гц с шагом 0,5 Гц и разрешением по времени 0,01 с. В тета- (4–7 Гц), альфа-1- (8–10,5 Гц), альфа-2- (11–13,5 Гц) и бета-диапазонах (14–21 Гц) усредняли КВП по частоте. Далее на основании визуального анализа механограмм внутри исследуемых 30-секундных интервалов усредняли эпизоды с нажатиями на кнопку и без нажатий по отдельности.
Полученные амплитудно-мощностные характеристики ЭЭГ анализировали с помощью дисперсионного анализа (ANOVARM). Рассматривали влияние на них факторов:
Анализ осуществляли для каждого из исследуемых частотных диапазонов. Все результаты получали с использованием поправки Гринхауза – Гессера. Для выбранных на основании результатов дисперсионного анализа частотных диапазонов для каждого отведения ЭЭГ с помощью парного критерия Стьюдента оценивали значимость изменений амплитудно-мощностных характеристик отдельно для интервалов с нажатиями и без нажатий между ситуациями 1 и 2, 2 и 3, 1 и 3. Все статистические вычисления проводили с использованием пакета программ SPSS 13.0.
Результаты
Паттерн нажатий с первой ошибкой и паттерн нажатий, предшествовавший длительному (полторы минуты и более) эпизоду сна, наблюдали после начала выполнения психомоторного теста через М = 9,37 ± 1,29 и М = 15,92 ± 2,01 минуты соответственно. Промежуток между ними составил М = 6,61 ± 1,36 минуты. Определяли период времени последнего появления адекватного паттерна нажатий, чтобы оценить период с колебаниями в правильности выполнения нажатий. Он продолжался М = 4,98 ± 1,16 минуты, после него наблюдался период только ошибочных паттернов М = 1,63 ± 0,33 минуты (приведены средние значения с ошибкой среднего).
Результаты дисперсионного анализа (ANOVARM) амплитудных характеристик биоэлектрической активности во всех исследуемых диапазонах ЭЭГ представлены в таблице.
Фактор «ситуация» оказывает значимое влияние на все исследуемые ритмы ЭЭГ. Изолированное влияние фактора «деятельность» выявлено для обоих поддиапазонов альфа- и бета-ритмов. Совместное влияние факторов «ситуация и деятельность» установлено для большинства исследуемых диапазонов, кроме тета-ритма. Кроме того, в большинстве диапазонов выявлено совместное влияние фактора «отведение» с факторами «деятельность» и «ситуация». Этот факт дал нам возможность исследовать региональные различия изменений в ритмической активности в зависимости от ситуации и фазы психомоторного теста.
Статистическая оценка изменений мощностных характеристик ритмов ЭЭГ по отведениям между состоянием полной бдительности и первым ошибочным эпизодом выполнения психомоторного теста приведена на рис. 1. В каудальных областях отведения ЭЭГ период нажатий на кнопку сопровождается ростом мощности тета-ритма и уменьшением альфа- и бета-ритма. Для ситуации счета в уме без нажатий показано генерализованное снижение мощности в альфа- и бета-диапазоне ЭЭГ.
На рис. 2 представлены различия между ситуациями полной бдительности и последним эпизодом деятельности перед засыпанием. В периоде с нажатиями тета-ритм возрастает в центральных, передневисочных и каудальных областях. Альфа-1- и бета-ритмы незначительно увеличиваются в переднецентральных областях коры. Альфа-2 снижается в затылочных и нижневисочных зонах. Счет в уме без нажатий сопровождается ростом альфа-1-, снижением альфа-2- и бета-ритмов. Эти различия наблюдаются практически по всей коре.
Результаты анализа изменений мощностных характеристик ЭЭГ между ситуацией первой ошибки испытуемого и ситуацией выполнения психомоторного теста перед засыпанием приведены на рис. 3. Различия обнаружены только при нажатиях на кнопку. Рост мощности альфа- и бета-ритмов показан в переднецентральных областях и теменной коре.
Обсуждение
Мощностные характеристики тета-, альфа- и бета-ритмов изменяются в зависимости от двух исследуемых факторов: сложности заданий психомоторного теста (счета в уме с синхронными нажатиями на кнопку и без нажатий) и периодов засыпания, которые характеризуются разной степенью сонливости и бдительности.
Эти задания выполнялись в затемненном помещении в положении лежа с закрытыми глазами, поэтому мы предполагали, что у большинства обследуемых уровень бдительности по мере осуществления деятельности будет быстро снижаться, увеличится сонливость, вплоть до засыпания, такие изменения отразятся как в поведенческих, так и в биоэлектрических характеристиках. Наше исследование подтвердило эти предположения. В ситуации первой ошибки выполнения психомоторной деятельности (уменьшение числа нажатий в паттерне) по сравнению с деятельностью в начале эксперимента наблюдалось увеличение мощности тета-колебаний, снижение альфа- и бета-ритмов. При счете и синхронных нажатиях увеличение тета-ритма и снижение альфа- и бета-ритмов носили локальный характер и обнаруживались в каудальных областях коры. При мысленном счете без нажатий, который следовал за паттерном нажатий с ошибкой, изменения альфа- и бета-ритмов носили генерализованный характер. Снижение мощности высокочастотных составляющих ЭЭГ с одновременным ростом тета-ритма связано с усилением сонливости [13–15]. Появление ошибки (уменьшение числа нажатий в паттерне) можно рассматривать как поведенческий маркер снижения уровня бдительности, и при выполнении более простой задачи (мысленный счет без нажатий) это явление более выражено. Дополнительная моторная деятельность требует большей активации. При этом ЭЭГ-характеристики начальной стадии засыпания носят локальный характер и проявляются в меньшем числе отведений.
При счете в уме перед паттерном с нажатиями, который непосредственно предшествовал периоду сна, по сравнению с аналогичной деятельностью в начале эксперимента наблюдается генерализованный рост альфа-1- и снижение альфа-2- и бета-ритмов. Последний эпизод моторной активности перед засыпанием сопровождается локальным увеличением мощности тета-, альфа-1- и бета-ритмов и уменьшением альфа-2. Увеличение мощностных характеристик тета-, альфа- и бета-ритмов на ЭЭГ является маркером состояния монотонии [5]. Увеличение тета-, альфа-1- с одновременным снижением альфа-2-ритмов связано с состоянием микросна с открытыми глазами при выполнении монотонной зрительно-пространственной деятельности [16]. Увеличение мощности тета- и альфа-ритмов во время деятельности может быть обусловлено и другими факторами, связанными с ее спецификой. Усиление тета-активности наблюдается при увеличении умственной нагрузки [17]. Рост альфа-ритма обнаруживается при выполнении обратного счета в уме [18]. Показано, что увеличение бета-активности на ЭЭГ коррелирует с усилением бдительности и способностью лучше осуществлять высшие когнитивные функции [19].
Анализируемые мощностные характеристики ЭЭГ паттерна счета в уме без нажатий при первой ошибке выполнения психомоторного теста и последнего, ошибочного, эпизода деятельности перед сном – статистически значимо не различались. При паттернах с нажатиями в этих обстоятельствах показано увеличение альфа-1-, альфа-2- и бета-ритмов в лобно-центральных и теменных областях коры. Период от первой к последней ошибке выполнения теста включал в себя паттерны как с десятью нажатиями, так и с меньшим числом нажатий. При этом наблюдалось увеличение временных интервалов между нажатиями. Мы не можем однозначно утверждать, что в эти интервалы испытуемые выполняли когнитивную деятельность, а не находились в состоянии микросна и последующие паттерны нажатий не испытывали влияния инерции сна. В пользу влияния фактора засыпания говорит факт смещения альфа-ритма из каудальных областей в передние [1]. Наряду с этим показано увеличение бета-активности после эпизода микросна [15]. Этот результат может отражать подсознательное стремление мозга восстановить сознание и перцептивную связь с внешней средой, а также повторно синхронизировать внимание и память для возобновления деятельности. В наших исследованиях показан рост альфа-1- и альфа-2-ритмов в переднецентральных областях при выполнении заданий психомоторного теста после пробуждения из более длительного (свыше полутора минут) дневного сна. Подобное явление наблюдалось, только когда обследуемые начинали восстанавливать эту деятельность с ошибками [20]. Обследуемый правильно припоминает инструкцию («нажимать – считать») в этих обстоятельствах, но не в состоянии в условиях инерции сна, сниженного уровня когнитивного контроля и осознания полностью ее реализовать. При чередовании эпизодов правильного и ошибочного выполнения психомоторного теста при засыпании, как мы предполагаем, субъект из-за колебаний уровня активации не всегда может точно следовать инструкции. Крайний паттерн нажатий с ошибкой, за которым следует длительный эпизод первой стадии сна, – не исключение.
Заключение
В разные периоды засыпания во время дневного сна уровень активации мозговых процессов при осуществлении деятельности разной сложности изменялся по-разному. На ранней стадии выполнение простой задачи (счет в уме от одного до десяти) сопровождалось генерализованным снижением альфа- и бета-ритмов. При этом более сложная задача (нажимать и считать), выполненная с ошибкой, вызывала их снижение только в каудальных областях отведения ЭЭГ. Непосредственно перед эпизодом относительно длительного сна (от полутора минут и более) мощностные характеристики ЭЭГ простой задачи по сравнению с эпизодом первой моторной ошибки не изменились. Выполнение более сложной задачи при этом сопровождалось ростом альфа- и бета-ритмов в переднецентральных областях и теменной коре. Мы предполагаем, что при углублении сонливости и снижении бдительности периодическая дополнительная моторная деятельность, сопровождающая счет в уме, поддерживает мозг в относительно бодрствующем состоянии.
Работа выполнена в рамках государственного задания Министерства образования и науки Российской Федерации на 2021–2023 гг.
Уважаемый посетитель uMEDp!
Уведомляем Вас о том, что здесь содержится информация, предназначенная исключительно для специалистов здравоохранения.
Если Вы не являетесь специалистом здравоохранения, администрация не несет ответственности за возможные отрицательные последствия, возникшие в результате самостоятельного использования Вами информации с портала без предварительной консультации с врачом.
Нажимая на кнопку «Войти», Вы подтверждаете, что являетесь врачом или студентом медицинского вуза.